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Abstract

A main challenge in transporting cargo for United States Transportation Com-

mand (USTRANSCOM) is in mode selection or integration. Demand for cargo is

time sensitive and must be fulfilled by an established due date. Since these due dates

are often inflexible, commercial carriers are used at an enormous expense, in order

to fill the gap in organic transportation asset capacity. This dissertation develops

a new methodology for transportation capacity assignment to routes based on the

Resource Constrained Shortest Path Problem (RCSP). Routes can be single or mul-

timodal depending on the characteristics of the network, delivery timeline, modal

capacities, and costs. The difficulty of the RCSP requires use of metaheuristics to

produce solutions. An Ant Colony System to solve the RCSP is developed in this

dissertation. Finally, a method for generating near Pareto optimal solutions with

respect to the objectives of cost and time is developed.
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Rough-Cut Capacity Planning in Multimodal Freight

Transportation Networks

I. Introduction

1.1 Background & Motivation

Transportation networks are prevalent in nearly every aspect of our society

and as of the most recent economic census, transportation revenues in the U.S. rep-

resent a nearly $640 billion segment of the economy [1]. Domestic and international

commerce is dependent upon the transportation of goods, personnel, and commu-

nications between geographically diverse locations. Commercial airlines, freight ser-

vices, and internet-based auction sites all depend on access to efficient and effective

transportation networks to maintain a competitive edge and continue profitable op-

erations.

Profitability of civilian industry depends heavily on the agility and cost effec-

tiveness of the transportation and supply chains used to transport raw materials

for production and to ship finished goods to market. This need has led to the

establishment and growth of Third Party Logistics providers (3PL). These 3PL or-

ganizations and DoD supply chain counterparts are under continuous pressure to

provide increasingly efficient transportation options to their customers. This can be

attributed to globalization, shrinking budgets, and expanding mission requirements.

Meeting these demands requires distribution providers to integrate historically dis-

parate transportation modes creating true multimodal options.

Military applications of transportation are equally dependent on the perfor-

mance of the networks they utilize. The problem of transporting commodities, and

people is so important to the DoD, that the DoD has attempted to centralize trans-
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portation control across the Army, Navy, and Air Force as early as 1979 with the

formation of the Joint Deployment Agency [90]. In 1987 the United States Trans-

portation Command (USTRANSCOM) was founded. Today the USTRANSCOM

is responsible for all assets and commodities via the Surface Deployment and Dis-

tribution Command (SDDC), Military Sealift Command (MSC), and Air Mobility

Command (AMC) until it reaches an Area of Responsibility (AOR) at which time

responsibility for goods in transit is assumed by a Geographic Combatant Comman-

der (GCC). In order to support these operations, USTRANSCOM must decide how

to allocate the air, land (truck/rail), and sea assets as well as personnel resources in

such a way as to ensure cargo is delivered on time to the locations it services [81]. The

2011 USTRANSCOM Strategic Plan discusses the need for JDDE synchronization

across all modes of transportation utilized by the JDDE partners [107].

Although multimodal transportation networks are used every day in both mil-

itary and civilian applications, the process of planning and coordinating transporta-

tion modes has received surprisingly little attention in the literature. Many recent

publications in the field of Supply Chain Management and Transportation claim to

address multimodal transportation planning but, in fact only address the coordina-

tion of at most two transportation modes [52]. Addressing multimodal transporta-

tion as an integrated network system is a relatively new concept. In fact the first

instance of this systems approach found in the literature is from 1999 [88]. This

research addresses capacity planning in multimodal freight networks.

1.2 Problem Description, Themes, & Gaps

Planning and coordinating multimodal transportation networks requires a method

of estimating the ability of the network to meet demands. This estimate must ex-

plicitly consider many factors affecting the overall capacity that the network can

support. Network capacity over a specified time period is sometimes referred to as

throughput. This definition of throughput will be adopted in the remainder of this
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research. Freight network throughput is affected by many factors. Those considered

in this research are: planning horizon length, fleet size for each transportation mode,

payload (in tons) of each asset by type, asset utilization rate, block speed, and asset

productivity.

Not only is the problem of estimating capacity in transportation networks

difficult, but given the increased demands for network capacity due to increases in

cargo volume demand, the problem has become a major concern of public policy [88].

Estimating the capacity of a multimodal network is plagued by the inadequa-

cies in current capacity modeling methods [96]. Previous work in estimating the

capacity of multimodal freight networks is inaccurate due to measuring individual

system components or the capacity of partially aggregated components. These par-

tial aggregations usually involve aggregation for estimating the capacity of single

transportation modes or aggregation in estimating the capacity of single “corridors”

through the multimodal system [49, 88, 105, 115]. The inadequacy stems from the

inability of current models to capure interactions among transportation modes due

to mid-path mode transfers and the interaction of other system components [96].

The most recent improvements in the area of multimodal freight transporta-

tion system capacity seek to provide a systems view of multimodal transportation

networks but addresses the problem at a tactical level of detail and only provides

a model formulation. No attempt is made to develop a solution approach for the

bilevel programming problem resulting from the model formulation [96].

1.2.1 Themes. Three themes provide context for the existing literature

and contributions: Integration of multiple fleets of transportation across multiple

modes of transportation and mode/carrier selection. Modal integration addresses

the problem of coordinating the resources of the different transportation modes in

order to gain efficiencies through synergy. The literature review will demonstrate

that modal integration is typically limited to two modes of transportation. Mode

3



selection seeks the single “best” mode of transportation with respect to cost, security,

delivery time, or some combination of these and other objectives.

Another emergent theme that is not addressed in the literature in the context of

multimodal transportation is the identification of efficient or near-efficient solutions

to capacity problems. An efficient or Pareto optimal solution is a multi-objective

concept of optimality. An efficient solution is one which cannot be improved with

respect to one objective without sacrificing quality in at least one other objective [40].

Efficiency will be discussed further in Chapter 5.

1.2.2 Gaps. In the field of production and inventory management, there is

a keen sense of the fidelity required to execute planning during the long-term, mid-

term, and short-term planning horizons. This awareness helps to control extraneous

data collections which are often both costly and time-consuming. Data for high

fidelity planning can be prohibitively difficult to obtain. Additionally, high fidelity

planning (scheduling the production on a single machine over the course of an hour

for instance), is not required in order to plan production operations over the course

of the next year. The purpose of the long and mid-term planning is to estimate

the feasibility of a desired level of production relative to the manufacturing system

capacity. Long-term (aggregate) plans are refined via mid-term (rough-cut capacity)

planning as the objective planning period draws closer. When the objective planning

period is within a month, a master production schedule is created from the rough-

cut estimates obtained through mid-term and long-term planning. In this way, the

production capacity of the system is not overwhelmed in any period.

No current source in the literature provides a time scalable method of rough-

cut multimodal freight transportation network capacity estimation. Scalability refers

to the ability of the method to adapt capacity estimates to an arbitrarily defined

planning horizon. Furthermore, the limited number of capacity estimation methods

are based on tactical-level considerations and are not well suited to estimating overall
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system capacity without tactical-level data which may not be available [96]. This

observation led to the identification of several gaps in the literature addressed by

this research:

• (G1) No scalable multimodal freight transportation network capacity estima-

tion method is found in the currently available literature.

• (G2) There is a lack of an operational-level multimodal freight transporta-

tion capacity estimation method requiring only operational-level data. Such a

method would be an extension of “capacity planning based on overall factors”

(CPOF) used in production and inventory management.

• (G3) Currently, there is no rough-cut capacity planning technique for mul-

timodal transportation. Developing such a capability by extending existing

concepts would represent a major contribution to the field of transportation

research.

• (G4) Development of a new modeling approach that considers a multimodal

transportation system holistically would represent a contribution to the field

of transportation research.

• (G5) Development of a solution procedure to identify efficient solutions under

various planning assumption scenarios would represent a contribution to the

fields of operations research and transportation research.

1.3 Problem Statement

Identification of these gaps leads immediately to the following problem state-

ment: “Given a fleet of vehicles from across multiple modes of transportation, de-

mand quantities/locations, supply quantities/locations, and planning horizon length,

determine the multimodal fleet mix and route providing the required capacity at

minimum cost based only upon these operational-level data inputs”
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The capacity of a network relates to its throughput over a specified period of

time. Since network flow may be continuous, the amount of throughput must be

defined for a specified time period in order to provide a basis for measurement and

comparison. Capacity estimates in freight transportation networks are conveniently

expressed in units of million ton miles per day (MTM/D). This standard measure of

vehicle fleet performance is the standard for air mobility but may be calculated for

any fleet of vehicles [91].

1.3.1 Research Questions. Effectively addressing this problem statement

leads to several questions that must be answered. The specific questions of interest

in this research are:

• (Q1.G1/G2/G3) Can concepts of Rough-Cut Capacity Planning be extended

to estimate the capacity of a multimodal freight transportation network as a

system given existing routes?

• (Q2.G2/G3) Can modeling and solution techniques be developed to allocate

the available capacity of a multimodal freight transportation network in a way

that minimizes costs and meets demand timelines?

• (Q3.G2/G3) What multimodal routes should be established in a network, in

order to improve cost efficiency and mission effectiveness?

• (Q4.G5) How do changes in numbers of assets, available routes, planning hori-

zon length, and input costs (fuel for instance) affect mode choices and overall

system costs?

• (Q5.G4) What areas of the multimodal transportation system would benefit

most from resource investments?

• (Q6.G1/G2) What is the appropriate fleet mix required to fulfill demand in a

set planning horizon at a minimum cost to the overall system?
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• (Q7.G5) How robust is the multimodal transportation system to losses in es-

tablished routes or assets? That is, what is the nature and length of system

capability degradation due to these losses?

1.4 Research Objectives

The hypothesis of this research is that multimodal rough-cut system capacity

planning can be executed using a network-based approach and capacity planning

techniques normally applied to production and inventory management. Extending

these methods requires the development of new theory. The following research objec-

tives provide original theoretical contributions and move the state-of-the-art forward

with respect to closing the gaps identified above.

Addressing these questions requires the development of a new methodology and

new modeling and analysis approaches to augment what is currently available in the

literature. These questions lead to an explicit statement of the research objectives.

1.4.1 Research Objectives & Contributions.

• (O1.Q1/Q2/Q3) Develop a methodology for operational-level multimodal freight

transportation capacity estimation that is scalable to an arbitrary planing hori-

zon and an arbitrary multimodal fleet size. The modeling method should cap-

ture interaction between the various modes of transportation.

• (O2.Q4/Q5/Q6) Develop a method for determining the least cost fleet mix

and routing structure for a specified range of assets and a specified range on

planning horizon.

• (O3.Q7) Develop a method for generating alternative near efficient solutions

and solutions with passive resilience to aid decision makers in analyzing trade-

offs in time, cost, and fleet assets.

7



1.5 Dissertation Overview

Chapter 1 has motivated this dissertation effort by briefly highlighting the na-

ture of the problem, discussing the relevance of the research within the context of

both military and commercial applications, and has presented the intended contri-

butions.

Chapter 2 will establish the uniqueness of the research in this dissertation by

providing a thorough treatment of the relevant literature. This chapter will compare

and contrast this dissertation work with past work. This chapter shows that the

intended contributions are indeed original and provide a solid scope and context for

the Methodology.

In chapter 3 we show how Multimodal Rough-Cut Capacity Planning is mod-

eled using the Resource Constrained Shortest Path Problem. We demonstrate how

this approach supports either mode selection or integration depending upon trans-

portation mode costs, fleet size, and planning horizon.

In chapter 4 we develop an Ant Colony System metaheuristic to quickly solve

large instances of the RCSP. In chapter 5 we develop a heuristic based on the ACS

of chapter 4. This new metaheuristic generates near-efficient solutions and helps

identify passive resilient solutions to the multimodal RCCP problem to aid decision

makers in analyzing tradeoffs between time, cost and asset utilization.

Chapter 6 summarizes the contributions, results, and conclusions of the disser-

tation and presents final analyses. Recommendations for future work complete this

chapter.
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II. Literature Review

2.1 Literature Review Strategy

This chapter provides a broad overview of the relevant literature. Chapters

3, 4, and 5 contain context specific literature review and thus the purpose of this

chapter is to demonstrate the uniqueness of the dissertation research described in

Chapter 1.

2.2 Overview of the Literature

Figures 2.1 and 2.2 provide a quick reference summary of the important sources

reviewed in this dissertation. Some sources, such as textbooks, were omitted since

their purpose is to support the analysis rather than contribute original work to any

field of research.
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Figure 2.1: Overview of Reviewed Literature Sources
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Figure 2.2: Overview of Reviewed Literature Sources
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Literature

Mode
Selection and
Integration
Capabilities

Multi-
Objective

Analysis of
Time/-

Cost/Asset
Tradeoff

Generate
alternative

near-efficient
and passive

resilient
solutions

Math
Programming

x x x

Multi-
Objective

x

Scheduling
Heuristics x

Table 2.1: Features of this dissertation versus literature’s research

Capacity planning in transportation is usually limited to one or two modes

of transportation. Sources considering more than two modes of transportation are

considering the problem of mode selection [83,96]. True multimodal integration is a

topic which is considered an area of opportunity in recent surveys of the transporta-

tion field [79, 119]. The focus of this dissertation is on the development of methods

for capacity analysis which are scalable to an arbitrary number of transportation

modes. Table 2.1 provides a concise comparison of this dissertation with other areas

of reviewed literature.

Sources in the literature focus on either mode selection or mode integration.

This dissertation is unique in several ways including the capability of analyzing a

multimodal network considering both mode selection and mode integration. A single

mode solution is returned if it is the most cost effective or is “best” with respect to

the multiple defined objectives. A multimodal solution is returned if it is the most

cost effective, is the best with respect to the multiple objectives, or if multiple modes

of transportation are needed in order to make the problem feasible by providing the

required capacity to meet delivery demands in the specified planning horizon. Table

12



Chapter
Unique

Transportation
Planning Capability

Ops Research
Methodology

3 Multimodal RCCP RCSP Problem

4
Accessibility of Large
Multimodal RCCP

Analyses

Ant Colony System
(ACS)

5

Generate Alternative
Near-Efficient and
Passive Resilient

Solutions

New Heuristic based on
ACS

Table 2.2: Overview of this dissertation

2.2 presents a summary of the content of the dissertation development in chapters

3, 4, and 5.

Capacity planning can be viewed from either the aggregate or the rough-cut

perspective. Aggregate planning focuses on the longer term strategy of production

and attempts to ensure supply matches demand by prescribing monthly or weekly

production output levels. By contrast, rough-cut planning seeks to ensure that the

production level prescribed in the aggregate planning process is feasible by estimating

the potential throughput or capacity of the production system.

2.3 Multimodal Freight Transportation

Literature sources reviewed in this research use the terms intermodal and mul-

timodal interchangeably. In order to standardize their use in this dissertation the

terms shall be defined as follows:

• Multimodal transportation refers to the delivery of freight from origin to des-

tination involving at least two different modes of transportation.
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• Intermodal transportation is refers to the transfer operations to move freight

between two modes of transportation at container terminals or other types of

intermodal ports [23].

2.3.1 Intermodal Transportation. Intermodal transportation is defined as:

“the transportation of a person or load from its origin to its destination by a se-

quence of at least two transportation modes, the transfer from one mode to the next

being performed at an intermodal terminal” [29]. The process of moving the goods

between modes is often referred to as transshipment. It is not a goal of the research

which follows to treat transshipment with any level of detail. Rather, this section is

designed to acknowledge that this topic is indeed an area of research in itself. For fur-

ther review of the topic of transshipment the reader is referred to [9,76,85,108,112].

These efforts are targeted at the tactical level and focus on port operations including

how to utilize different technologies to efficiently accomplish port tasks. For the pur-

poses of this research, tactical efficiencies matter only as they relate to throughput

capacities of the various nodes (bases) in the network.

A 1996 article by Haghani and Sei-Chang models logistics for disaster relief as

a multi-commodity, multi-modal network flow problem [53]. The modeling approach

utilizes the concept of a time-space network which has also been used by Nielsen et

al. and in many other applications by Barnhart and Armacost in a similar manner [6,

7,95]. The authors formulate the network as a MILP and then propose two different

heuristics for obtaining solutions to the formulation. Route length restrictions are

not considered in this formulation. By using the time-space network formulation,

the model is capable of representing a change in transportation mode by an arc

traversal. Similarly, advances in time are represented as arc traversals as well. The

distinction between changes in mode, changes in time, and changes in location are

managed by indexing the sets of time-windows, locations, and modes.
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2.4 Multi-Layered Networks

Kennedy introduced the concept of multi-layered network synthesis considering

both cost and robustness as competing objectives. He applied a multicriteria decision

analysis technique using epsilon constraints to scalarize the objective function. He

then extended this new formulation to include flow and connectivity constraints [73].

Multimodal freight transportation networks can be modeled using layered networks

and interactions (i.e. transfers between modes) can be modeled using inter-layer

arcs [73, 74].

2.5 Hierarchical Production Planning

Hierarchical Production Planning techniques have been developed for use in

planning production operations at varying levels of fidelity. Long-range planning

is generally executed using lower levels of fidelity since there may be changes in

important factors affecting production between the planning and execution phases.

Mid-range planning is somewhat higher fidelity but still does not produce detailed

tactical level schedules due to potential changes in input factors. Master Production

Scheduling produces detailed schedules of how the raw inputs will be converted into

finished products using the manufacturing resources of the factory, like machines and

manpower [19,30,58,60,61,69,93,98].

2.5.1 Aggregate Production Planning. Aggregate planning encompasses

both aggregate output planning and aggregate capacity planning. Aggregate output

planning attempts to match production and demand. Aggregate capacity planning

assesses the feasibility of the aggregate output plan by estimating how much produc-

tion capacity is required to meet the production levels prescribed by the aggregate

output plan [69]. In aggregate planning the individual products are normally aggre-

gated into product families based on some measure of product similarity. By reducing

the number of products the aggregate planning process can be completed in a timely
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manner [28]. The estimates obtained using aggregate planning are rough, but are

usually sufficient to estimate the long-term requirements in the six to eighteen month

rolling planning horizon.

2.5.2 Rough-Cut Capacity Planning. The focus of this dissertation is

rough-cut capacity planning in multimodal transportation. Rough-cut capacity plan-

ning is similar to aggregate capacity planning but differs in fidelity and function.

In rough-cut planning the goal is to estimate the ability of the system to meet

the required production demand over a shorter time period and is used to assess

the feasibility of a master production schedule. RCCP addresses the question: “Is

there sufficient capacity in the production capabilities to support the desired level

of production?” There are three prominent methods of performing RCCP: Capacity

Planning using Overall Factors (CPOF), Capacity Bill Procedures, Resource Pro-

files [66, 109].

In the context of this dissertation, rough-cut capacity planning will be de-

fined as planning to establish the feasibility of a desired level of multimodal system

freight throughput in millions of tons. The scheduling of the multimodal fleet is

not addressed but many heuristics for scheduling fleets exist and the reader is en-

couraged to reference Pinedo for a thorough treatment of scheduling algorithms and

heuristics [97].

The function of the capacity planning and the data requirements are the pri-

mary reasons for classifying this dissertation as rough-cut capacity planning rather

than aggregate capacity planning. As Chapter 3 will show, only operational level

data such as aircraft capacity, and speed are needed in order to complete the capac-

ity planning approach developed in this research. Also, the heuristic developed is

meant to provide a user with the ability to quickly produce solutions under differ-

ent scenarios so the function is more in line with near-term rather than long-term

planning. However, the math programming model provided in chapter 3 may also
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be solved by deterministic methods if time allows so its scope is not restricted only

to near term estimates as optimal solutions may be determined as well.

2.5.3 Master Production Scheduling. The purpose of master production

scheduling is to plan the short-term (i.e., weekly or monthly) production activities

of the factory in order to ensure demand is met. In MPS the product families are dis-

aggregated into individual products and are treated individually. A key requirement

for the successful linking of aggregate planning, rough-cut planning, and master pro-

duction scheduling is in aggregating and disaggregating products and product fami-

lies in an appropriate way. For more detail on the issues associated with aggregation

and disaggregation the reader is encouraged to reference Hax and Candea [58].

2.6 Capacity Planning in Multimodal Freight Transportation

Park developed a first-of-its-kind model to address multimodal freight trans-

portation from a comprehensive standpoint in order to leverage the competitive

advantages of each mode [96]. The model Park develops is an integrated multimodal

freight model but the model uses an “average load factor” for each mode and there-

fore is not additive with respect to capacity over the entire fleet of vehicles in each

mode. This is in contrast to the MTM/D approach proposed in this research [96].

Sun et.al. use an existing LP model called MAXCAP which seeks to maximize

the system capacity for multiple origin destination pairs subject to resource and

capacity constraints. Additionally, they analyze the “flexibility” and performance

of the system under degradation. However, they consider only a single mode of

transportation, movement by rail [104].

Andersen et. al. address the design and optimization of a multimodal sched-

uled service network. The model provides “tactical” level planning. The main goal

of the model developed is to determine the appropriate departure times to maximize
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throughput. The primary issue in this report is the coordination and synchronization

of schedules among multiple fleets of vehicles [4].

Kasikitwiwat and Chen discuss different definitions for network capacity. The

authors categorize capacity models into two main types: economic and physical net-

work capacity [71]. Three methods of examining physical network capacity (reserve,

ultimate, and practical capacities) are presented and discussed.

Russ et.al. formulate a network design problem for multimodal transportation

infrastructure investment planning in Indonesia, as a bi-level programming problem.

The lower-level program models traffic flow equilibrium and is solved using a iter-

ative descent direction algorithm. The upper level program manages the capacity

allocation on the arcs and is solved using a genetic algorithm [102].

2.7 Shortest Path and Resource Constrained Shortest Path Problems

The RCSP is a generalization of the well known shortest path problem in

which the elements of the shortest path are also subject to knapsack constraints

based upon resource limitations. The RCSP was first proven to be NP-Complete in

1980 by Handler and Zang and many extensions and applications have since been

developed [38, 48, 54]. Even the least general version of the RCSP, the Elementary

RCSP (ERCSP) in which no arc is repeated has been shown to be strongly NP-Hard

by Beasley and Christofides in 1989 [18]. This ERCSP finds applications in vehicle

routing where it is often the route pricing subproblem [26,51,101].
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III. Rough-Cut Capacity Planning using Resource-Constrained

Shortest Paths

3.1 Introduction

Consider the problem of planning for capacity utilization in multimodal freight

distribution networks. This complex problem has received relatively little attention

in the literature from a truly integrated multimodal perspective [79]. Capacity alloca-

tion in multimodal freight transportation must address many factors in determining

to which routes capacity is to be allocated.

The literature sources reviewed demonstrate a gap in the area of transportation

mode integration. Much of the previous research addressing multiple transportation

modes focuses on mode selection rather than integration. Mode integration is defined

here as the seamless use of two or more modes of transportation to provide required

system capacity. Mode integration differs from mode selection in that mode selection

is concerned with what percentage of demand is to be allocated to each mode of

transportation, usually based upon cost. These decision problems are typical in

third party logistics (3PL) applications. A weakness of this approach is that mode

selection views transportation modes in a strictly parallel configuration. This view of

the transportation modes as separate systems ignores the possibility of cooperation

among multiple modes to save time and money.

A recent survey of the transportation mode choice and carrier selection lit-

erature reviewed over ninety separate references spanning a period of over forty

years [83]. These efforts seek the mode that provides the least expensive shipping

option to support delivery of the required freight capacity within the specified time

period. Research efforts following this methodology ignore the potential for even

greater cost and time savings that might be gained through truly integrated multi-

modal shipping options.
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Many articles have been devoted to estimating the capacity of single mode

transportation networks and, in particular, rail network capacity has been exten-

sively studied. Many of these efforts use or extend the MAXCAP model which uses

“traffic lanes” that are aggregated network nodes geographically close with an estab-

lished recurring commodity flow [87,88,104]. Some “multimodal” capacity planning

sources surveyed were, in fact, only bi-modal [16]. This is an obvious inadequacy in

the literature since many logistics providers use a combination of air, truck, rail, and

sea assets. Methods of simultaneous mode analysis are badly needed.

Previous network capacity modeling efforts are inadequate to capture the true

transportation network capacity since they typically utilize network aggregation

techniques which reduce the fidelity and accuracy of the resulting capacity esti-

mate. Corridors and modal networks are two popular methods of aggregation used

in estimating single and multimodal network capacities [49,88,105]. A recent model-

ing effort focusing on multimodal transportation capacity estimation uses a bi-level

programming formulation to allocate capacity. The formulation is so complex no

attempt is made to provide a solution method [96]. Aggregation is done a priori

resulting in a network abstraction which has no ability to yield insights at higher

fidelity. The final result is an inadequate analysis resulting from a loss of valuable

system information due to aggregation.

Macharis and Bontekoning have established opportunities in operations re-

search for contributions to multimodal transportation [79]. The gaps in the litera-

ture are categorized into drayage, terminal, network, and intermodal categories based

upon the level of problem fidelity. This work considers the “network” and “inter-

modal” areas. Drayage is mainly used in reference to the transport of containerized

cargo over short distances. Terminal operations are the port operations concerned

with transloading cargo between modes or vessels of conveyance Network issues con-

cern infrastructure and route planning and pricing. Intermodal or multimodal issues

surround the route and service choices for existing networks. In particular there are
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opportunities in methods that aid intermodal operators in determining which group

of routes and services to purchase from terminal and drayage operators on behalf of

a shipper to minimize cost and delivery time frame.

Zografos and Regan discuss challenges in intermodal freight transportation in

Europe and the United States and the need to develop information and communica-

tion technologies to aid decision making in a deregulated, free enterprise transporta-

tion market [119]. They reiterate the need for planning methods to aid 3PL firms

in purchasing individual services from separate providers that can act as integrated

multimodal transportation options.

The “Multimodal Corridor and Capacity Analysis Manual” suggests the use

of multimodal corridors for which capacities are calculated in aggregate [105]. One

inadequacy of this approach is that any change or disruption in a link within the

aggregated corridor capacity estimate would require a separate capacity analysis.

Other network capacity estimation research efforts lack the ability to model

multimodal freight transport capacity and allocation. Asakura estimates the capac-

ity of urban transportation networks given user route preferences using a bi-level

programming formulation [8]. This bi-level programming approach is also used by

Park and Regan to estimate the capacity of multimodal transportation systems al-

though the model is not solved due to the complexity of the formulation [96]. Yang

et al. formulate a similar network capacity problem which further accounts for

the potential for land development in determining route selection. Once again this

approach relies on a bi-level programming formulation for which a heuristic is pro-

posed [115]. Morlok and Riddle rely upon the MAXCAP problem formulation to

estimate transportation system capacity. This model uses aggregated routes based

on a priori information of commodity flow between origin-destination pairs [88]. Ge

et al. use a bi-level programming formulation to determine the effect of reserve ca-

pacity on a road network while accounting for traveler information [49]. Methods

not relying upon bi-level programming to plan system capacity are preferred since
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bi-level programming problems require development of specialized algorithms. In the

case of mixed-integer bi-level programming problems solving the relaxation does not

provide a valid bound on the optimal solution to the original problem causing many

difficulties in even obtaining feasible solutions to capacity problems formulated as

bi-level programming problems [15,86].

The preceding paragraphs provide strong evidence that simply extending cur-

rent modeling techniques is not sufficient to overcome the inherent inadequacies in

current capacity modeling approaches. Therefore, a new capacity modeling method-

ology is required in order to improve the fidelity and accuracy of network capacity

estimates. In the context of freight transportation, such an approach must capture

important system parameters like single trip vehicle capacity, length of planning

horizon and the size of the vehicle fleet. These parameters, and others, drive net-

work capacity. Allocation of this capacity should provide network paths efficiently

using fleet capacity.

Minimizing the data collection required is highly desirable since data collection

is often difficult, time-consuming, and expensive. Reusing data that are already

available eliminates the need to collect and analyze additional data sources which

may support no other purpose. This article explicitly addresses all of these factors

and develops a new capacity modeling approach for capacity planning. Our novel

approach is then extended in order to model capacity given an arbitrary number of

distinct transportation modes.

Given a fleet of vehicles from across multiple distinct modes of transportation,

single source and sink, and planning horizon length, consider the problem of deter-

mining the multimodal fleet mix and path which will provide the required capacity

at minimum cost based only upon operational-level data inputs.

We define operational data as those data that are available without requiring

additional data collection. Examples would be engineering and operating specifica-
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tions of the vehicle fleets, estimates (in tons) of the freight to be transported, and

the length of the time window for transportation planning.

We demonstrate how rough-cut capacity planning (RCCP) in freight networks

is modeled using a modification of the Resource Constrained Shortest Path Problem

(RCSP). The basic Shortest Path Problem (SPP) is modified by adding a knapsack

constraint on resource consumption. The RCSP was originally proposed by Handler

and Zang in 1980 [54]. Define the following sets and variables:

N = {1, 2, ..., n} a set of uniquely labeled nodes

A = {(i, j) : i, j ∈ N} a set of directed arcs that define

adjacencies for the nodes in N

G = (N,A) is a graph defined by the nodes in

N and the arcs in A

R is the quantity of resource available

s is the label assigned to the source

node where supply is located

t is the label assigned to the destination

node where demand is located

cij is the cost of traversing arc (i, j)

xij = 1 if arc (i, j) is included in the path

and 0 otherwise

(3.1)

The RCSP is formulated as:
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Minimize
∑

(i,j)∈A

cijxij (3.2a)

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N (3.2b)

∑
(i,j)∈A

cijxij ≤ R (3.2c)

b(s) = 1, b(t) = −1, b(i) = 0 ∀ i 6= s, t (3.2d)

In this formulation, 4.2a is the objective function that minimizes cost, 4.2b

are the flow balance constraints, 4.2c are the knapsack constraints on resources, and

4.2d are the flow forcing constraints.

Applications of the RCSP to transportation include solving vehicle routing

problems [43], routing a homogeneous vehicle fleet [11], in such diverse contexts

as wastewater treatment in Kuwait and in ensuring compliance with government

standards for thermal resistance in building design [41].

The RCSP is at least as hard as NP-complete problems as first shown by

Handler and Zang in 1980 [5, 48, 54, 75]. RCSP’s can be classified according to

four basic criteria [64]: resource accumulation, path structural constraints, objective

function, and the nature of the underlying network.

Resources may be accumulated either on the arcs or at the nodes. Accumula-

tion of resources on the arcs uses resource vectors while accumulation at the nodes

uses resource intervals. These two methods for resource accumulation are equivalent

if there is no lower bound on resource consumption. Path structural constraints cap-

ture node-arc adjacencies, branch-and-price rules, and admittance of any non-simple

paths to the solution. Objective functions are classified as single-objective or multi-

objective depending upon the number of objective components being considered.

Finally, the underlying network is classified as cyclic or acyclic. Networks containing
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cycles have an infinite number of paths and the solutions may be unbounded. How-

ever, cyclic networks can be transformed into acyclic networks via discretization to

prevent unbounded solutions [64].

We now turn our attention from classifying RCSP problems to classifying RCSP

solution methods. Garcia, and Mehlhorn and Ziegelmann have provided classification

schemes for RCSP’s [47,82] which are broadly categorized into path ranking, labeling,

and Lagrangian Relaxation methods.

Path ranking methods are based upon the work of Eppstein, and of Hoffman

and Paveley who first studied the k-shortest path problem [42,59,72]. Such methods

generally operate by building paths and then ordering them according to some cri-

teria such as cost or length. In RCSP’s the shortest path often breaks one or more

of the knapsack constraints. Selecting an alternative path (from the rank ordered k-

shortest generated) which is also feasible in the knapsack constraints is one approach

using k-shortest paths.

Labeling methods operate by searching for non-dominated paths. Each path

is labeled with both its cost and resource consumption. When an alternate path

is found that is superior to the incumbent with respect to either cost or resource

consumption and at least as good in the remaining criterion, then the incumbent is

replaced by the alternate path. Irnich and Villeneuve provide a labeling method for

k-cycle elimination for k ≥ 3 [65].

Lagrangian Relaxation-based solution methods solve a relaxation of the original

problem by relaxing the knapsack constraint associated with the resource consump-

tion, and then working to close the duality gap between the relaxed linear program-

ming primal and dual solutions. Mehlhorn and Ziegelmann have created a RCSP soft-

ware package called “Constrained Network Optimization Package” which operates

based on Lagrangian Relaxation and closing the primal-dual gap [11,18,21,100,113].
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Heuristics other than Lagrangian Relaxation have also been successfully ap-

plied to the RCSP and similar problems. Particle Swarm Optimization was applied

to the Resource Constrained Project Scheduling Problem by Zhang et. al. [116]. Has-

sin developed a fully polynomial approximation bounding scheme for the RCSP that

was later generalized by Lorenz and Raz to accommodate both positive and negative

arc weights [57, 78]. Hu et al. develop an improved version of the Ant System (AS)

originally proposed by Dorigo for solving the RCSP [63]. The proposed AS relies

upon modified heuristic information and pheromone updates to drive convergence

to paths meeting the resource constraints [33].

Zhu and Wilhelm developed a three step approximation algorithm that is ap-

plied iteratively to obtain successively tighter bounds on the optimal solution [117].

Step one preprocesses the graph to remove nodes and arcs which cannot be contained

on any feasible path. Step two expands the reduced graph based upon resource avail-

ability and step three solves the unconstrained shortest path problem. Arc weights

are adjusted and the algorithm is repeated until sufficiently tight bounds are deter-

mined. There are many other research efforts that have been devoted to developing

fast running heuristics for the RCSP [10,39,57,75].

Jepsen et al. provided the first solution method for the ERSCP based on

branch-and-cut. In order to strengthen the formulation a new class of valid inequality

called generalized capacity inequalities, is developed. This new class of inequality is

combined with knapsack constraints and subtour elimination constraints which are

all introduced as cutting planes in the branch-and-cut algorithm [67].

No source reviewed in the literature provides a time scalable method of multi-

modal freight transportation network capacity estimation. Scalability refers to the

ability of the method to adapt capacity estimates to an arbitrarily defined planning

horizon. Furthermore, the limited number of capacity estimation methods are based

on tactical level considerations and are not well suited to estimating overall system

capacity without tactical level data which may not be available [96].
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3.1.1 Assumptions. For the purposes of this research we assume that

capacity is expressed in terms of tons. This assumption allows us to use million-ton

miles (MTM) as the resource for the knapsack constraints as we demonstrate in the

next section.

We do not consider weight and balance, dimensional packing, or individual

vehicle routing as these problems are well represented in the literature [3,13,20,70,80].

Finally, we assume that scheduling is completed in near-term planning. RCCP

is targeted at mid-range planning and answering the question “Does the system have

sufficient capacity to meet the demand.” Once demand and capacity are equilibrated

through RCCP, scheduling algorithms and heuristics are used to build final delivery

schedules [58,97].

3.2 Modeling Approach

The modeling approach established in this section treats each transportation

mode as a separate layer of a network. Each network layer shares a common node

set with all other network layers. The layers differ by the arc sets which define node

adjacencies within each layer. In order to ensure that the available capacity within

each mode of transportation is respected by the modeling approach, the RCSP is

used to capture the capacity constraints which are defined for each layer. These

capacity constraints will be defined in the following sections.

The RCSP is preferred to the Multicommodity Network Flow Problem (MCNF)

presented by Ahuja et al. since the MCNF uses bundling constraints on total arc

flow shared by all commodities and cannot capture individual capacity constraints

for the various modes of transportation [2]. By contrast, the knapsack constraints

on resources can be used to constrain resource usage through summing arc weights

along a network path.

Modeling the rough-cut capacity problem for multimodal transportation re-

quires the development of some model parameters. First, we formulate the single
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mode case as a RCSP problem and then generalize the result to an arbitrary number

of distinct transportation modes. In a physical network, each pairwise adjacent set

of nodes has associated with it, a distance label. The graph is not required to be

complete. That is, not all nodes in the network are pairwise adjacent. For example,

consider a network of four shipping and receiving locations. Let node 1 be a source

node, node 4 be a sink node, and nodes 2 and 3 be transshipment nodes. The arc

labels represent the Euclidean distance between nodes. Such a network is shown in

Figure 3.1:
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Figure 3.1: An Example Network: G1

Network capacity can be viewed as the ability of a network to provide a re-

quired level of throughput within a given time window. Since network flow may be

continuous, the amount of throughput must be defined for a specified time period

in order to provide a basis for measurement and comparison. Capacity estimates

in freight transportation networks are conveniently expressed in units of million ton

miles per day (MTM/D). This standard measure of vehicle fleet performance is the

standard for air mobility but may be calculated for any fleet of vehicles [91]. Implicit

in this definition of capacity is that the “cost” associated with adding capacity to a

route, concerns distance, time, and required capacity (expressed in millions of tons).

In figure 3.1, for example, the distance between node 1 and node 2, d12 =

d21 = 8. If five million tons of freight must be transported between nodes 1 and 2

at a cost of $2 per MTM then we can re-weight the arcs in the network, expressing

weights as the cost for the required million-ton-miles (MTM) allocated to an arc
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by multiplying each dij by the number of tons of freight (in millions) required to

be moved, m, and the cost per MTM h. This label must then be weighted by the

estimated cost per MTM for the mode of transportation. The final arc weight is

then given by: csij = dij ∗m ∗ h. The arc weights now express a composite quantity

which addresses cost, distance, and required capacity. In order to assign capacity to

arc (i, j), cij/h MTM are required. The reweighted network is labeled as shown in

Figure 3.2:
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Figure 3.2: Reweighted Network

The number of MTM available, r, is a function of the transportation fleet

characteristics and the planning horizon length (T ). This can be expressed as: r =

V ∗MT ∗ T where MT is the million-ton-mile per day capability of a single vehicle

and V is the number of vehicles in the fleet. By inspection the shortest path through

the example network is 1→ 2→ 4. This path requires 45 MTM at a cost of $90. If

our fleet cannot provide the required MTM, then the problem is infeasible unless we

add assets to the fleet (increase V ) or add days to the extend the planning horizon

length (T ).

The parameter MT is calculated based on the following operational level data:

“UTE” rate, payload, block speed, and productivity. UTE rate is the average his-

torical “surge” capability of a single vehicle in hours per day. This represents the

maximum availability of each vehicle per day. Down time due to scheduled main-

tenance and reliability issues are assumed to be captured in this quantity. Vehicle

payload is the single trip capacity of a vehicle in tons. Vehicle block speed is the
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average door-to-door vehicle speed. Productivity, refers to the average historical

percentage of non-empty trips over all vehicles. This parameter accounts for repo-

sitioning of vehicles within the fleet when they are moved while empty in order to

pick up a load of freight. Now MT is calculated as MT = MTM/D per asset =

(UTE∗Payload∗Block Speed∗Productivity)/1, 000, 000. The single mode formula-

tion can now be presented building upon the development of these parameters.

3.2.1 Single Mode Formulation. To simplify the presentation of the single

mode resource constrained shortest path formulation the following parameters and

vectors are defined: N = {1, 2, ..., n} is the set of nodes representing shipping loca-

tions, C = {(l, v) : (l, v) is an arc in the graph} is the set of feasible directed arcs

defined over the elements in N , G = (N,C) is the graph consisting of nodes in N

and arcs in C, and E is the n×|C| node-arc adjacency matrix where each column of

E has a 1 in the lth row and a −1 in the vth row corresponding to adjacency matrix

element Elv. Now define Elv along with the following sets, matrices, and scalars as:
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Elj =


1 if l ∈ N is the tail of arc j ∈ C

−1 if l ∈ N is the head of arc j ∈ C

0 otherwise

∀ l ∈ N , j ∈ C

q s(j) =

 1 if Esj = 1

0 otherwise
∀ j ∈ C

q t(j) =

 1 if Etj = −1

0 otherwise
∀ j ∈ C

Q =


q s

. . .

q t



h : the cost (in dollars) per MTM

r : the number of MTM available

B s : the 1× |C| vector of arc weights

x : the 1× |C| vector of decision variables

J =
B s

h

(3.3)

The single mode formulation can now be expressed as:
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MinimizeB s x (3.4a)

subject to:Ex = 0 (3.4b)

Qx = 1 (3.4c)

Jx ≤ r (3.4d)

x ∈ B|C| (3.4e)

By comparison with the generic RCSP formulation presented in section 3.1,

this formulation is also a RCSP problem where 5.2a is the objective function, 5.2b

are the transshipment portion of the flow balance constraints, 5.2c are the source

and sink portion of the flow balance constraints, 5.2d are the knapsack constraints,

and 5.2e are the flow forcing constraints.

3.2.2 Multimodal Formulation. Generalizing the single mode model to

incorporate multiple transportation modes requires introduction of several other sets

and indices to aid in describing not only the intra-mode arcs for each transportation

mode but also the inter-mode arcs. To develop the generalization, an identical “copy”

of the physical node set is created for each mode of transportation. Although the

nodes for each mode of transportation are identical, the edge set for each mode of

transportation may be distinct in order to represent different node adjacencies that

might exist depending upon the mode of transportation. Furthermore, some nodes

may act as intermodal transshipment points at which freight may be transfered

between modes of transportation. A port which has both a rail head and a sea port

may be one such combination. These intermodal transfers require definition of new

sets of intermodal arcs. An example is provided following the development of the

multimodal RCSP formulation.
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We first define the following sets and parameters to generalize the single mode

for addressing multimodal freight transportation. Let P = {1, 2, . . . , p} be the set

of available transportation modes and k ∈ P be be the index for these modes. Also

N = {1, 2, . . . , n} be the set of nodes, as in the single-mode formulation with i ∈ N

being the index for the nodes. Expanding the original graph as described in the

previous paragraph results in a node set with np nodes. The indices for the node set

of the expanded graph are l, v ∈ {1, . . . , np}. Let Nk = {1+n(k−1), . . . , n+n(k−1)}

be the node set for mode k in the expanded graph. Finally, let M i = {i, . . . , i+n(k−

1), . . . , i + n(p − 1)} be the node set in the expanded graph corresponding to node

i in the original graph. Define the additional sets, and matrices used in formulating

the multimodal RCSP:

Ck = {(l, v) : (l, v) is an intra-mode arc in the graph for mode k}

Di = {(l, v) : (l, v) is an inter-mode arc in the graph for node i}

η =
⋃
k

Nk: the node set for the expanded graph

Λ =

(⋃
k

Ck

)⋃(⋃
i

Di

)
: the arc set for the expanded graph

Gk = (Nk, Ck): the graph for mode k

H i = (M i, Di): the graph for node i

Ψ = (η,Λ): the expanded graph

(3.5)

Now we define additional indices. Let u ∈ {1, ..., |Λ|} be the index for the arc

set of the expanded graph, mk ∈ {1, ...|Ck|} be the index of the intra-mode arc set

for for each transportation mode k, and zi ∈ {1, ..., |Di|} be the index of the inter-

mode arc set for each node i. Also let s and t be the indices of the source and sink

nodes in the original, non-expanded graph respectively. With these sets and indices

we can now develop the multimodal formulation using the matrices defined below.
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Ek
l,mk =


1 if l ∈ Nk is tail of arc mk ∈ Ck

−1 if l ∈ Nk is head of arc mk ∈ Ck

0 otherwise

F i
l,zi =


1 if l ∈M i is tail of arc zi ∈ Di

−1 if l ∈M i is head of arc zi ∈ Di

0 otherwise

E = [E1...E2... . . .
...Ep]

F = [F 1...F 2... . . .
...F n]

A = [E
...F ]

q s(u) =
∑
l∈Ms

Al,u=1

Al,u∀u

q t(u) =
∑
l∈Mt

Al,u=−1

Al,u∀u

Q =


q s

. . .

q t



(3.6)

Additionally, we define the following vectors and matrices. Note that in the

definitions below, the notation B′ is taken to be the matrix transpose of B.
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h : the 1× p matrix of mode transportation costs in dollars per MTM

r : the 1× p vector of MTM available in mode k

B sk : the 1× |Ck| vector of arc weights for mode k

B ti : the 1× |Di| vector of arc weights for node i

B s = [B s1...B s2... . . .
...B sp]

B t = [B t1
...B t2

... . . .
...B tn]

x : the 1× |Λ| vector of decision variables

B′ =


B s′

. . .

B t′



J1 =


B s1

h(1)
0 . . . 0

0 B s2

h(2)
. . . 0

...
...

. . .

0 0 B sp

h(p)


J = [J1

...0]

(3.7)

Using the preceding developments we can now formulate the multimodal RCSP

as:

Minimize Bx

subject to: Ax = 0

Qx = 1

Jx ≤ r

x ∈ B|Λ|

(3.8)

3.2.2.1 Dimensional Analysis & Problem Structure. In many real-

world math programming applications, the constraint matrix exhibits special struc-

ture which may be exploited to quickly solve large problems [77]. In fact, many
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commercial solvers perform preprocessing analysis of problems in order to determine

if such structure is present in a given problem instance. These solvers will exploit the

problem structure internally without intervention by the user. The constraint matrix

generated in the previous section exhibits a bordered angular structure exploitable

through cross decomposition which is a combination of Dantzig-Wolfe and Benders’

decomposition. Before presenting the entire constraint matrix, we begin by showing

consistency of dimensions among all constraint matrix subcomponents.

Each matrix, Ek, has a column for each arc contained in the intra-mode graph

of mode k . Each F i matrix has a column for every arc in the inter-mode graph on

node i. Both Ek and F k have a row for every node in the expanded graph as shown

in the figures below. Note that Ek will have rows of zeros for all nodes l not in mode

k ∀k ∈ P . The structure of each matrix Ek results in the matrix E having specal

structure as discussed in the proceeding paragraph.

|Ck|

Ek |np|

|Di|

F i |np|

The node-arc incidence matrix, A, for the expanded graph has a row for each

node and a column for each inter-modal and intra-modal arc. A comprises both E,

the matrix formed by horizontally concatenating all matrices Ek and F , the matrix

formed by horizontally concatenating all matrices F i.∣∣∣∣∑
k

Ck

∣∣∣∣
E |np|

∣∣∣∣∑
i

Di

∣∣∣∣
F |np|

|Λ|

A |np|

The following graphic shows the special block diagonal structure of the E ma-

trix. This structure is due to the way the expanded multimodal graph is constructed
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by creating a “copy” of the nodes with unique labels ofr each transportation mode.

Each Σ in the structural representation of E below depicts a block of non-zero ele-

ments and the 0 entries depict appropriately dimensioned blocks of 0 entries.∣∣∣∣∑
k

Ck

∣∣∣∣
Σ 0 0 0

0 Σ 0 0
...

... . . .
...

... |np|

0 0 Σ 0

0 0 0 Σ

The vectors in the constraint matrix that ensure exactly one source and one

sink node are chosen have a single row and a have column for every arc in the

expanded graph.

|Λ|

q s 1

|Λ|

q t 1

|Λ|

Q 2

The dimensional analysis for the B s and B t is identical to the analysis for E

and F . These vectors are provided below for completeness along with the vector,x,

of decision variables.∣∣∣∣∑
k

Ck

∣∣∣∣
B s 1

∣∣∣∣∑
i

Di

∣∣∣∣
B t 1

|Λ|

x 1

The vector, d, has a column for each arc in the expanded graph. The matrix,

J1 has a row for each intra-modal arc in the expanded graph and a column for each

mode of transportation appending an appropriately dimensioned matrix of zeros to

J1 yields the matrix J with a column for each arc in the expanded graph and a row

for each mode of transportation.
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|Λ|

d 1

∣∣∣∣∑
k

Ck

∣∣∣∣
J1 p

|Λ|

J p

The graphic below depicts the structure of the complete constraint matrix. The

dimensions of the complete constraint matrix are (p(n + 1) + 2) × |Λ| are obtained

by summing the component rows and columns.

|Λ|

E1 E2 . . . Ep F 1 F 2 . . . F n = 0

p(n+ 1) + 2

Q = 1

J 0 ≤ r

This modeling approach represents a capacity planning at a Rough-Cut level

of fidelity since it requires only operational level inputs. This method of capacity

estimation is analogous to the “Capacity Planning based on Overall Factors” which

uses historical data to perform mid-range to long-range planning in the context of

a hierarchical production planning process. Readers unfamiliar with Hierarchical

Production Planning are encouraged to reference Hax and Candea or Bitran and

Hax [19,58].

One feature of the model that is important to note is that it will always return

the least cost feasible shipping option for the required capacity. This means that if
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a single mode option is least expensive and the fleet size for the mode is capable of

providing the required number of million-ton-miles, then the solution returned will

be a single mode solution.

3.3 Example Problem Formulation

In this section we explore the nature of the methodology presented in the

previous section by formulating a small example problem to aid in methodology

conceptualization and to show empirically, the utility of the modeling approach de-

veloped. An interesting feature of the modeling approach is that it accounts for the

intermodal transfer costs. Due to this fact, the model will perform mode selection if

a single mode of transportation is both feasible and least expensive. Alternatively,

if an integrated multimodal route is less expensive, or if it is the only feasible option

due to a lack of capacity in other transportation modes, then the model will select

an integrated multimodal route.

The formulation presented below was constructed to demonstrate a situation

where an integrated multimodal route solution is optimal. This same problem is

modified slightly (the intermodal transfer weights are increased) in order to demon-

strate the use of the model for single mode selection. The final characteristics demon-

strated using this small example problem are the affect on capacity (and the resulting

optimal solution) due to changes in capacity and planning horizon length.

3.3.1 An Example Formulation. Beginning with the single-mode graph

presented in section 3.2, we expand the graph to include two additional modes of

transportation. Each of the transportation modes has a different node adjacency

structure. The intra-modal graphs of the two additional transportation modes are

shown below. These graphs represent G1, G2, and G3.

Now in order to define the complete expanded graph, the nodes must be rela-

beled according to v = i+n(k−1) and the inter-modal graphs defined on each node
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Figure 3.3: An Example Network: G1
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Figure 3.4: Graph for G2
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Figure 3.5: Graph for G3
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in the original graph must be generated. The inter-modal graphs are shown below.

These graphs shown in Figure 3.5 (from left to right) are the graphs H1, H2, H3,

and H4:

1 3 2 4

5 67 8

9 1011 12

11

1 11 1

1 1

Figure 3.6: Intermodal Graphs of H1, H2, H3, and H4

By combining the intra-mode and inter-mode graphs it is now possible to

specify a single graph for use in formulating the multimodal RCSP as shown in

Figure 3.6.

The sets used to formulate the preceding graph are provided below for com-

parison and reference. In this example n = 4, p = 3.
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Figure 3.7: Multimodal Graph
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i ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3}

l, v ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

s = 1, t = 4

N1 = {1, 2, 3, 4}, N2 = {5, 6, 7, 8}, N3 = {9, 10, 11, 12}

M1 = {1, 5, 9}, M2 = {2, 6, 10}, M3 = {3, 7, 11}, M4 = {4, 8, 12}

C1 = {(1, 2) , (2, 1) , (2, 3) , (3, 2) , (2, 4) , (4, 2)}

C2 = {(5, 7) , (7, 5) , (6, 7) , (7, 6)}

C3 = {(9, 11) , (11, 9) , (10, 11) , (11, 10)}

D1 = {(1, 9) , (9, 1)}

D2 = {(2, 6) , (6, 2)}, D3 = {(3, 7) , (7, 3) , (7, 11) , (11, 7)}, D4 = {}

η = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Λ =


(1, 2) , (2, 1) , (2, 3) , (3, 2) , (2, 4) , (4, 2) , (5, 7) , (7, 5) ,

(6, 7) , (7, 6) , (9, 11) , (11, 9) , (10, 11) , (11, 10) , (1, 9) ,

(9, 1) , (2, 6) , (6, 2) , (3, 7) , (7, 3) , (7, 11) , (11, 7)



(3.9)

Indices relying upon the above set definitions are u, mk, and zi. These indices

and the matrices they index are:

E1 =


1 −1 0 0 0 0
−1 1 1 −1 0 −1
0 0 −1 1 0 0
0 0 0 0 −1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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E2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0
0 0 1 −1
−1 1 −1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



E3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0
0 0 1 −1
−1 1 −1 1
0 0 0 0



E =



1 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 1 −1 0 −1 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0



F1 =


1 −1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
−1 1
0 0
0 0
0 0



F2 =


0 0
1 −1
0 0
0 0
0 0
−1 1
0 0
0 0
0 0
0 0
0 0
0 0



F3 =


0 0 0 0
0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−1 1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 1
0 0 0 0


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F4 = Omitted since it is a matrix of zeros

F =



1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 1 −1
0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0



A =



1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
−1 1 1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 −1 1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



q s =
[

1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

]

q t =
[

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
Q =

[
1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]

Before the formulation can be completed, the distance labels applied to the

multimodal network must be modified by accounting for the parameters associated

with time and shipping/transfer costs. Let h = [0.4, 2, 2] be the vector of shipping

costs per MTM. There is an entry in the vector for each of the three transportation

modes. Similarly, assume the remaining parameters are specified as follows: number

of vehicles in each mode is given by the vector [30, 21, 20], block speed in miles

per hour is specified by [300, 400, 500], UTE rate in hours per day by [10, 12, 15],
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single trip payload for each vehicle type in units of tons is given by the vector

[20, 20, 20], and the productivity as an average historical percentage of trips where

each vehicle type travels with a full freight load as [.5, .5, .5]. Additionally, let us

assume we have T = 100 days to complete the freight movement and assume we

wish to transport ten million tons of freight φ = 10. Finally, assume the intermodal

transshipment costs are $1 per million tons. The values in B t, the inter-modal arc

weights, are calculated based upon the transfer cost per MTM and the number of

tons (in millions) of demand (φ). An intermodal arc from mode 1 to node 9 (B t(1)),

for example is reweighted as B t(1) = h(1) ∗ φ = 1 ∗ 10 = 10. The reweighed graph

represents the graph for ψ.
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Modifying the arc weights in order to represent capacity in terms of MTM ,

we can now generate the B s, B t, d, J1 and J matrices and and the r vector.
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r =
[

90 96 150

]

B s =
[

32 32 4 4 4 4 20 20 10 10 20 20 20 20

]

B t =
[

10 10 10 10 10 10 10 10

]

d =
[

32 32 4 4 4 4 20 20 10 10 20 20 20 20 10 10 10 10 10 10 10 10

]

J1 =
[

80 80 10 10 10 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 10 10 5 5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 10 10 10 10

]

J =
[

80 80 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 10 10 5 5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 10 10 10 10 0 0 0 0 0 0 0 0

]

This completes the formulation of the constraint matrix components. It is a

trivial exercise to verify consistency among the dimensions and formulate the entire

constraint matrix and, thus, these final steps are omitted.

3.3.2 Mode Selection & Integration. One feature of the modeling approach

important to note is that it will always return the least cost feasible shipping option

for the required capacity. This means that if a single mode option is least expensive

and the fleet size for the mode is capable of providing the required number of million-

ton-miles, then the solution returned will be a single mode solution.

To demonstrate this capability, consider the example formulation of the pre-

vious section. The solution is given by the single modal path 1 → 2 → 4. If modal

transportation costs change then optimality may also change. Similarly, if resource
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constraints change then feasibility may change. Either of these changes has the

potential to affect the optimal solution.

Now assume that the transportation cost vector changes to h = [5, 2, 2]. The

updated values for Bt are shown below and the new optimal solution is given and

interpreted.

B s =
[

400 400 50 50 50 50 20 20 10 10 20 20 20 20

]
The optimal solution now changes to the bi-modal path 5→ 7→ 6→ 2→ 4.

This path is interpreted in the physical network as beginning at node 1 in mode 2

and adding capacity to arc (1, 3). At node 3 in mode 2, capacity is added to (3, 2) in

mode 2. Capacity is transfered from node 2 in mode 2 to node 2 in mode 1. Finally,

capacity is added to arc (2, 4) in mode 1.

Consider another mode price vector of h = [5, 2, 0.5]. This transportation price

structure admits a truly multimodal optimal solution in which all three modes of

transportation are used in an integrated way to provide the required capacity. The

updated Bt vector for the new price structure is:

B s =
[

400 400 50 50 50 50 20 20 10 10 5 5 5 5

]
The multimodal solution corresponding to this value of h is 9 → 11 → 7 →

6 → 2 → 4. Interpretation of this multimodal path is similar to that for the bi-

modal path and is left to the reader as a simple exercise. The next section discusses

computation results of the methodology.

3.4 Results

Problems in this section are randomly generated according to several param-

eter inputs: Number of nodes, number of modes, density of arcs, and time and
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transportation asset availability. The problems are generated using MATLAB and

output as Mathematical Programming System (MPS) files. The MPS file format is a

standard modeling format which is recognized by major math programming solvers

like LINGO and CPLEX. Models are solved using LINGO 11.0 running on a Toshiba

Satellite E105 laptop computer with a 2.26 GHz Intel Core2 Duo CPU and 4 GB of

RAM running 64-bit Microsoft Windows XP.

3.4.1 Parameter Selection & MPS File Generation Issues. Generating the

MPS files was time consuming. In fact, MPS file generation took longer that solving

the problem represented by the MPS file. In addition, file sizes for the generated

files were very large. The largest file generated contained 250 nodes and 3 modes

of transportation for a total of 750 nodes. The MPS file size for this problem was

approximately 28 MB. The authors feel that the generated problems are of reasonable

size to demonstrate the validity of the RCSP formulation.

3.4.2 Table of Results for Successfully Generated Problems. Problems were

randomly generated using 90% arc density and three modes of transportation. The

smallest problem has 150 total nodes (50 nodes and three transportation modes) and

probelms were generated in increments of 50 nodes up to 250 (250 ∗ 3 = 750 total

nodes). Twenty-five instances of each problem size were generated in support of the

analysis.

The results in table 3.1 include the problem MPS file size and solution time

using LINGO 11.0. Twenty-five problems of each size were generated and the mean

and standard deviation are provided for the time required to generate each problem

size. The mean MPS file size is provided for each problem size. Standard deviation

of the MPS file size adds no value to the analysis and is omitted.
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Nodes Modes Total Nodes MPS (MB) Generate (sec) Solve (sec)
µ σ µ σ

50 3 150 1.3 14.57 0.23 0.63 0.18
100 3 300 5.02 66.48 0.82 2.50 0.45
150 3 450 11.24 201.62 2.96 7.75 4.58
200 3 600 19.87 569.56 7.87 17.08 8.13
250 3 750 30.94 1364.96 57.70 37.48 5.41

Table 3.1: Problem Generation and Solution Times

3.5 Contributions and Future Work

This article has made two original contributions to the state-of-the-art in

freight capacity planning. First, we developed a new modeling approach for the

rough-cut capacity planning problem by modeling this problem as a RCSP. This

approach provides a time-scalable method of capacity planning which determines a

least cost allocation of available capacity to a network route which meets a speci-

fied demand (in tons). Secondly, we have extended this capacity planning modeling

approach into the domain of multimodal freight capacity planning. This extension

allows the allocation of capacity to be either single or multimodal depending upon

the cost of such an allocation. Contributions in this article demonstrate the validity

of the proposed modeling method.

Future research will focus on generating larger instances of the problem to

determine if exact solutions can be obtained. If exact solutions cannot be obtained

in a reasonable amount of time, then a heuristic may need to be developed to solve

such problems. Heuristics for solving the RCSP are categorized into three basic types:

path ranking, labeling, or Lagrangian Relaxation. Various heuristics use either pure

forms of these methods or a combination of two or more [32,42,47,59,65,82,100].

The contributions of this article to the field of operations research could be

improved by additional research in the area of computer science. Specifically, how to

quickly generate larger instances of the RCSP problem for solution by commercial

solvers. The limitations experienced during testing for this article could be partially

mitigated by applying computer science concepts to aid in the compact storage and
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efficient manipulation of the RCSP constraint matrix. However, the NP-complete

classification of the RCSP will ultimately prevent generating problems of sufficiently

large size due to the exponential problem growth as a function of the number of

nodes and arcs.

One area for future research is the extension of swarm intelligence heuristics for

solving the RCSP and on the identification of efficient solutions with respect to the

resources of the RCSP. In the context of transportation these resources represent the

consumption of time or transportation asset capacity. Identifying efficient solutions

would aid decision makers in determining the best use of time and assets to meet

the goals of the transportation system.

Additional research should be performed in the areas of analyzing transporta-

tion system robustness and resilience within the context of multimodal freight trans-

portation. Multimodal integration presents a unique opportunity to reduce redun-

dancy within a transportation mode while maintaining a passive resilience to meet

demand among the other transportation modes within a system.
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IV. An Ant Colony System for Solving the Resource Constrained

Shortest Path Problem

4.1 Introduction

The Resource Constrained Shortest Path Problem (RCSP) is a variation on

the classic Shortest Path Problem (SPP) in which the goal is to find a path of

minimum total weight connecting a source node, s, and a sink node, t. The RCSP

differs from the classic SPP in that it contains an additional knapsack constraint

which is applied to the sum of the weights on the minimum s,t-path. Although

the SPP is well solved by algorithms like Dijkstra’s algorithm, Floyd-Warshall, and

the Out-of-Kilter algorithm, no efficient algorithm for solving the RCSP has been

developed [48].

The RCSP belongs to the class of optimization problems known as NP-Hard

[54,110]. The necessity of solving the RCSP and other, equally difficult optimization

problems has led researchers to develop various metaheuristics to quickly generate

good solutions to these difficult problems.

The RCSP has previously been applied to rough-cut capacity planning in mul-

timodal transportation [56] where it was noted that sufficiently large instances of

the RCSP took longer to generate than to solve. The memory required to generate

the constraint matrix for the RCSP imposes a restriction on the size of a problem

instance that can be generated before running out of memory. Even the largest

instances capable of being generated can be solved to optimality rather quickly.

In order to overcome this inherent difficulty, metaheuristics can be used to solve

the problem. Typically, the amount of data required by a metaheuristic to solve a

given problem instance is less than that required to generate the same problem

constraint matrix for solution via a commercial solver. In this article we present an
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extension of the Ant System (AS) metaheuristic that incorporates new features in

order to solve the RCSP.

4.1.1 Solving the RCSP. Traditional methods for solving the RCSP have

been classified into three categories: Path Ranking, Labeling, and Lagrangian Re-

laxation [47, 82]. The method of k-shortest paths was developed by Hoffman and

Pavley and later improved by Eppstein to run in O(m + nlogn + kn) on acyclic

graphs [42,59].

Dynamic programming is one type of node labeling method which operates

recursively. Dijkstra’s Algorithm is a classic and well known example of this type

of solution approach. Irnich and Villeneuve provide a labeling method for k-cycle

elimination for k ≥ 3 [65].

Lagrangian Relaxation-based methods usually begin by relaxing the resource

constraints which make the RCSP NP-Hard. This relaxation is solved as a shortest

path problem and then efforts are made to reduce the duality gap [32,100].

Many heuristics to solve the RCSP have been developed based on one or more

of these traditional methods. Other solution approaches involve the use of meta-

heuristics like Greedy Randomized Adaptive Search Procedure (GRASP) or local

search-based metaheuristics like Evolutionary Algorithms, Tabu Search, Simulated

Annealing, Guided Local Search, and Iterated Local Search being extended to solve

the RCSP. Constructive metaheuristics construct feasible solutions and stop while

local search metaheuristics iteratively improve upon incumbent feasible solutions.

4.1.2 Constructive and Local Search Metaheuristics. Evolutionary Algo-

rithms, Tabu Search, Simulated Annealing, Guided Local Search, and Iterated Local

Search are examples of metaheuristcs which are classified as either constructive or lo-

cal search based. All of these metaheuristics except GRASP, which is a constructive

metaheuristic, are local search based.
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4.1.3 Swarm Intelligence and Ant Colony Optimization. The literature is

rich with examples and applications of biologically inspired metaheuristics. Parti-

cle Swarm Optimization, Ant Colony Optimization, and Artificial Bee Colony Algo-

rithms are newer examples of some biologically inspired optimization techniques [22].

Ant Colony Optimization is a popular and successful constructive metaheuris-

tic which is expressly designed to solve network type problems. First developed in the

1992 dissertation of Marco Dorigo, ACO has been successfully applied to many prob-

lems capable of being formulated as shortest-path type problems [36]. The basic idea

for ACO was inspired by observing the behavior of ants as they forage out of the nest

for a food source. Each ant, as it travels leaves a pheromone trail which is detected

by subsequent ants. Initially, ants randomly choose a direction in which to move,

then subsequent ants are influenced by the pheromone trails left. The pheromones

evaporate over time and therefore the pheromone trail on shorter paths connecting

the nest and the food source tends to be stronger. Eventually, all ants will choose to

follow the path containing the strongest pheromone scent. Empirically, it has been

observed that in a majority of experiments the shortest path connecting the nest to

the food source is selected by all ants after sufficient time has elapsed [50]. ACO

is related to other reinforcement learning approaches through artificial pheromones

and evaporation mimicking a process called stigmergy which makes pheromone trail

strength available to all ants. It is assumed that the reader is familiar with the basic

terminology, components, and operation of ACO algorithms. For readers requiring

further background information, the 2004 book on ACO is recommended [37].

Ant Colony Optimization can include both constructive and local search ele-

ments and has been successfully extended to solve many shortest-path-type prob-

lems in the past. Problems in the areas of routing, assignment, scheduling, subset,

and machine learning problems have all been addressed using some variation of

ACO [14, 17, 46, 68, 99, 114]. Many other articles have been published using some

variation of ACO to solve a variety of problems. An ACO survey paper by Dorigo
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et al. contains over one hundred references that apply ACO variations to at least

eighteen different problem types in five different problem categories [34].

4.1.4 The Basic Ant Colony Optimization Metaheuristic. A Metaheuristic

is a heuristic that is used to guide other heuristics in searching a solution space for an

optimal solution. A heuristic is likely to become “trapped” in local optima. Hence,

metaheuristics employ a variety of techniques to expand the search of the solution

space and prevent premature termination of the search at local optima. However,

metaheuristcs typically do not guarantee convergence to globally optimal solutions

except under conditions yielding full enumeration of the solution space.

Basic ACO operates by using a group of computer agents (ants) transiting the

solution space by moving from a node to adjacent nodes. The decision of which

adjacent node to visit is determined through biased random selection. Ants choose

randomly among remaining nodes but as the search progresses, the node transition

probabilities are biased through the use of the artificial “pheromones” deposited by

ants previously transiting the arc to a node. The pheromone deposits are assigned

a global evaporation rate so that the amount of pheromone on an arc decreases

with each passing iteration. Obviously, arcs which are visited more frequently, will

have higher pheromone concentration as the search progresses. Ants select arcs with

greater pheromone concentration with higher probability than those arcs with lower

pheromone concentration [37]. This provides the reinforcement aspect of the search.

Each ant in the colony can leverage globally available information regarding

pheromone concentrations. This indirect method of communication between ants in

to colony is called “stigmergy” and is the primary mechanism of the ACO. The effects

of sitgmergy are studied extensively in a 2005 report prepared for the Canadian

Department of National Defense [111].

Several variations and improvements on the original ACO algorithm (referred

to as simple ACO or S-ACO) have been developed. These include Ant System (AS),
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Elitist AS, Ant-Q, Ant Colony System (ACS), Rank-based AS, ANTS, Hyper-cube

AS, and Min-Max AS (MMAS). Ant System was initially proposed by Dorigo in

1992 [33]. Ant System has inspired similar metaheuristics including Ant-Q and ACS

among others. Ant-Q was developed by Gambardella and Dorigo in 1995 [44]. ACS

was inspired by Ant-Q and was developed in 1996 [35,45]. It differs from Ant-Q only

by the initial pheromone value applied to each arc. Empirical comparisons of these

ant system algorithms indicate that the consistently best performing variants of the

ant system algorithm are ACS and MMAS [89].

ACS is the most aggressive of the ACO variations and, according to Dorigo

generally produces the best quality solutions for short computation times [37]. Since

the method developed in this article is used as a solution generator in the context

of a larger search scheme, we have selected ACS due to the empirical evidence that

it produces high quality solutions in relatively short periods of time. Implementa-

tion details are discussed in the next section. We consider the RCSP problem as

formulated below:
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N = {1, 2, ..., n} a set of uniquely labeled nodes

A = {(i, j) : i, j ∈ N} a set of directed arcs that define

adjacencies for the nodes in N

G = (N,A) is a graph defined by the nodes in

N and the arcs in A

R is the quantity of resource available

s is the label assigned to the source

node where supply is located

t is the label assigned to the destination

node where demand is located

cij is the cost of traversing arc (i, j)

xij = 1 if arc (i, j) is included in the path

and 0 otherwise

(4.1)

Minimize
∑

(i,j)∈A

cijxij (4.2a)

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N (4.2b)

∑
(i,j)∈A

cijxij ≤ R (4.2c)

b(s) = 1, b(t) = −1, b(i) = 0 ∀ i 6= s, t (4.2d)

In this formulation (4.2a) is the objective function, (4.2b) is the set of flow

balance constraints, (4.2c) is the set of knapsack constraints and (4.2d) are the flow

forcing constraints.
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Merkle et al. developed an ACO metaheuristic to solve the Resource Con-

strained Project Scheduling Problem (RCPSP) [84]. The work is a variation of the

Ant System for the Traveling Salesman Problem (AS-TSP) originally discussed by

Dorigo and later by Dorigo et al. [33, 36]. Improvements to the AS-TSP made by

Merkle et al. include combining two methods of pheromone evaluation, dynamic

changes to the influence of the heuristic information on the probability of selection

of arcs in tour construction, and an option to “forget” the best solution found so far

in order to increase exploration during the search.

Hu et. al. (2010) investigated how ACO could solve navigation problems which

account for multiple psychological expectations of the driver [63]. This problem is

formulated as a RCSP and solved using an Ant System metaheuristic. They provide

improvements to the original AS algorithm through the use of an improved transition

probability rule for the ants and also an improved pheromone update scheme that

consider the various driver expectations in route selection.

The remainder of this article is devoted to the development of a new Ant

Colony System heuristic to solve the RCSP and to empirical testing of the heuristic’s

performance. An application to multimodal freight transportation capacity planning

is presented and testing is executed on problem instances of various size in order to

examine the relationship between parameter settings, problem size, solution time,

iteration count, and solution quality. The article concludes with a discussion of the

contributions made and areas of future research.

4.2 Modeling Approach

4.2.1 Selecting an Ant Colony Metaheuristic. Empirical testing suggests

the best performing of the ACO variants on the Traveling Salesman Problem are ACS

and MMAS [37]. Selecting one of these variants as a starting point for extension to

solve the RCSP is based on comparing the observed behavior of the two variants.

Dorigo and Stutzle compared the performance of ACS and MMAS on instances of
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the TSP contained in the TSPLIB [37]. While MMAS generally found slightly better

quality solutions in long runs of the algorithm, ACS is the more aggressive search

strategy and finds significantly better quality solutions for short computation times.

ACS is extended and applied to the RCSP.

4.2.1.1 Solution Quality vs. Speed. Metaheuristics must be tailored

to solve specific problems. In the case of ACS, there are parameters that can be

tuned to control the behavior of the search. Such choices generally require tradeoff

between computational performance and solution quality. Some major configuration

decisions in implementation are whether or not to implement a local search strategy

and if local search is used then determining pheromone update type (Darwinian vs.

Lamarckian), use of data structures, and type of heuristic information about network

arcs.

Implementation of a local search begins with a tour constructed by an ant

(s1) and through the local search process yields an improved path (s2). Reinforcing

the pheromone trail on s1 is referred to as a Darwinian pheromone update while

reinforcing the pheromone trail along the arcs corresponding to s2 is a Lamarckian

update.

In this research no local search is implemented following initial path construc-

tion. Eliminating local search produces a time savings of about ten percent [37].

Heuristic information is used in tour construction. The method of tour construction

used in ACS determines for each ant k at city i the city j that is visited next by:

j =

 argmaxl∈Nk
i

{
[τil]

α[ηil]
β
}
, if q ≤ q0;

J, otherwise
(4.3)

In 4.3, the parameter ηkij is the multiplicative inverse of the Euclidean dis-

tance between i and j, (ηkij = 1/dij). This Euclidean distance heuristic provides a

more aggressive search strategy than simply using the multiplicative inverse of arc
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distance to provide the heuristic information. The parameter τ kij is the strength of

the pheromone on arc (i, j), Nk
ij is the neighborhood of ant k while at node i, q is

a uniformly distributed random variable on the interval [0, 1], (0 ≤ q0 ≤ 1), β is

the tuning parameter for the weight of the heuristic value relative to the pheromone

strength, and α is the pheromone weight parameter. Also let J be a random variable

from the probability distribution:

pkij =
[τij]

α[ηij]
β∑

l∈Nk
i
[τil]α[ηil]β

, if j ∈ Nk
i (4.4)

Pheromone levels are updated after each ant has constructed a path. The two

update operations applied to the pheromones are evaporation and deposit. Collec-

tively, these two operations provide the stigmergistic aspects of the heuristic. Stig-

mergy is manipulated by changing the rate and method for evaporation and deposit.

All ants have access to this common information and therefore communicate indi-

rectly through updates to these stigmergic parameters. Evaporation controls how

quickly the corporate “memory” of estimated arc quality is “forgotten.” Deposit up-

dates, discussed in the following section, provide a means of updating the collective

corporate memory.

Finally, ASC differs form other ACO metaheuristics in three basic ways. First,

it uses a more aggressive search strategy in the construction step by heavily exploiting

the learned knowledge of other ants through the pheromone trails. Second, ACS only

employs pheromone deposit/evaporation on the best path found so far in the search.

Finally, pheromone strength is reduced on an arc immediately after it is traversed

by an ant which drives exploration by making previously explored arcs less likely to

be selected.

In this research, we use a designed experiment to optimize the parameter set-

tings used in ACS as applied to the RCSP. Typical implementations of ACS assume

a value of α = 1. In our experimentation we treat α as a variable value to which
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optimization is applied along with the other search parameters in order to determine

the best setting of all parameters relative to the RCSP.

4.2.2 Extension of ACS to Solve RCSP Problem. Ant Colony Metaheuris-

tics are often used to construct Hamiltonian Circuits in solving the traveling salesman

problem. Such a search explicitly requires that each node in the network is visited

exactly one time. In constructing shortest paths it is only necessary to specify a

source and sink node and perform the search until the sink node has been visited

at which point the search terminates and the current path is returned as a feasible

solution.

In ACS, both a global and a local pheromone update are used. The local

pheromone update is done by all ants immediately after traversing an arc. The

global pheromone update is done once per iteration only by the ant that has found

the best path so far.

An iteration consists of all operations required for each ant in the colony to

build a path, determine the best path from among these paths (sib), compare (and

replace if necessary) sib to the best path so far over all iterations (sbs), and complete

the local and global pheromone updates, both deposits and evaporation procedures.

Global pheromone updates are applied at the end of each iteration according

to the following replacement operation: τij ← (i−ρ)τij+ρ∆τ bsij , ∀(i, j) ∈ P bs. In this

operation, ∆τ bsij = 1/(Cbs), where Cbs is the length of the best path found so far, P bs

is the best path so far, and ρ ∈ (0, 1] is the pheromone evaporation rate parameter.

Local pheromone updates are applied according to: τij ← (1 − ξ)τij + ξτ0. In this

operation ξ ∈ (0, 1] is an evaporation parameter. The local pheromone update is

applied to an arc immediately after an ant crosses the arc. The effect of the local

pheromone update is to decrease the desirability of an arc after it is traversed in

order to drive diversification of the search and avoid search stagnation. The effect of

the global pheromone update is to reinforce the pheromone on arcs that are on the
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best path found so far in the search. The local pheromone update prevents search

stagnation by encouraging exploration of previously unvisited arcs.

Since ACS is usually applied to the TSP, the τ0 parameter is typically set to

a value of 1/(nCnn) where n is the number of cities in the TSP and Cnn is the

length of a tour obtained using a “nearest neighbor” heuristic [37]. In shortest-path

problems we do not have an a priori value for either n or Cnn and will have to

estimate these parameters. Options for estimating n might include shortest path

heuristics like A∗ or solving the shortest path problem directly using a shortest

path algorithm like Dijkstra’s Algorithm. Either of these options could significantly

increase computational time.

Estimates for n and Cnn are obtained by approximating the number of “hops”

on the shortest path (nst), and the length of the shortest s,t-path estimated as the

Euclidean s,t distance (Est). Now our estimate is taken as: τ0 = 1/(nstE
st). nst is

obtained by dividing Est by the average length of an arc in the network (al). To

obtain al we divide the sum of all network arc distances (t) by the number of arcs

in the network (m). We can calculate τ0 directly for any network encountered as:

τ0 = t/(m(Est)2).

Dorigo and Stutzle suggest using the multiplicative inverse of arc distance,

ηij = 1
dij

, as a heuristic measure of the desirability of arc (i, j) [37]. If we assume

Euclidean distance then: disij = [(xi − xj)2 + (yi − yj)2]1/2. Another heuristic is:

ηij =

 1
disjd

if disjd 6= 0

1 if disjd = 0
(4.5)

Where disjd is the Euclidean distance from node j to the destination node d.

This Euclidean distance heuristic for use in ACO was first proposed by Hu et. al. [63]

to make the search less “myopic” at each iteration by encouraging selection of nodes
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that are closer to the destination node. The relative importance of the pheromone

and heuristic values are mediated by the parameters α and β.

Traditional Ant Colony Optimization constructs feasible paths by accounting

for node adjacency in non-complete graphs. The RCSP has the knapsack constraint

that imposes an additional restriction on path feasibility. A given path is feasible

only if it is also resource-feasible. Therefore, the neighborhood of the current node

consists of nodes that are adjacent and resource-feasible.

Two mechanisms are used to ensure that resource-feasible paths are guaranteed

to be constructed if they exist. First, resource consumption on partially constructed

paths is maintained for each ant, making possible the identification of non-resource-

feasible nodes in each neighborhood. Secondly, backtracking is implemented to allow

ants to move to a previously visited node if no resource-feasible nodes exist in the

current neighborhood. This approach guarantees construction of resource feasible

paths if such paths exist.

4.3 Testing the ACS Metaheuristic

Our ACS metaheuristic was tested in three stages. The first stage involves de-

termining the parameter values for the ACS. The second stage involves running ACS

on problems with known optimal solutions to characterize the quality of the ACS

solutions along with the speed with which they are obtained. Finally, ACS is tested

on large problem instances to demonstrate that the ACS can quickly find feasible

solutions to problems that cannot be generated for solution using a deterministic

binary integer programming approach.

4.3.1 Selection of Parameter Values. An ACS, offers two primary objec-

tives: “running time” and “percent above the minimum objective function value.”

These response variables are affected by the problem and by the ACS parameter
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Parameter Name Description Limits (Lower,Upper)*
α controls the relative influ-

ence of the pheromone trail
[0.1, 1]

β controls the relative influ-
ence of the heuristic infor-
mation

[1, 6]

max iterations the number of complete
search iterations each ant
colony should perform

[10, 1000]

num ants the size of the ant colony
used in the search

[5, 1000]

num neighbors the number of nearest
neighbors to consider in
selecting each successive
node

[5, 25]

q0 pseudorandom proportional
action choice rule

[0.1, 1]

ρ pheromone evaporation rate [0.1, 0.9]
ξ local pheromone trail up-

date rule
[0.1, 1]

* limits as suggested by Dorigo and Stutzle [37]

Table 4.1: Parameter Value Ranges
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values. Design of Experiments (DOE) and Response Surface Methodology (RSM)

provide tools to find input parameter values [92].

Optimizing multiple response variables can be accomplished by fitting models

to each response variable and then jointly optimizing both responses using desirabil-

ity functions [31]. Since ACS has stochastic components, replications are used. The

focus of of our initial experimentation is to characterize the solution space. Rather

than using a 28 full factorial design of 256 experimental runs, we opt for a central

composite design (CCD) [92]. This design ensures independent estimates of all main

effects and two-way interaction terms. However, some of our experimental parame-

ters must be set to integer values and other parameters are being experimented with

at the their operating extremes. Since the CCD axial points may not correspond to

integer parameter values we opt to use a non-rotatable variation of the CCD called

a face-centered cube design (FCD). Although the FCD is non-rotatable, it has fairly

stable prediction variance throughout the design region when two center runs are

used. No significant improvement in prediction variance is gained beyond two center

runs and therefore we elect to use exactly two center runs in the FCD. We have

selected a fractional FCD composed of a 28−1 with 128 runs, 18 axial points, and

two center points. The total number of experiments is 146.

Empirical testing by Hartlage and Weir indicates that the largest problem

instance able to be generated for solution by a commercial solver had 750 nodes [56].

All attempts to generate larger problems failed due to memory issues. We ran the

ACS experiments here using a randomly generated network with 750 total nodes and

ninety percent arc density. The table below shows the fit statistics and the analysis

of variance information obtained using JMP.

Not surprisingly, the model fit for for the response of “percent over optimal” is

weak. This is driven mainly by the propensity of the ACS metaheuristic to converge
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R2 0.375135
R2
adjusted 0.102916

RMSE 7.070444
Observations 146

Table 4.2: Fit Statisitcs for % over optimal

Source DF SS MS F ratio
Model 44 3031.2051 68.8910 1.3781
Error 101 5049.1084 49.9912 Prob > F
Total 145 8080.3135 0.0953

Table 4.3: ANOVA Table for % over optimal

to an optimal solution in an overwhelming number of test instances, even when

varying the parameter settings. This tendency indicates that the ACS metaheuristic

is fairly robust to parameter values. The plot of predicted versus actual values

provides visual evidence of this assertion. Notice the appearance of a horizontal

grouping of test points whose actual value was “zero.” That is, these points are

test points for which the predicted value was greater than the actual value. Stated

another way, the metaheuristic outperformed the predicted performance in these

cases. Figure 4.1 provides a concise graphical depiction of this relationship.

Figure 4.1: Percent over optimal for actual vs. predicted
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The table below summarizes this empirical result. Notice that over sixty-

percent of the time, regardless of the parameter combination used in the experiment,

ACS found a solution that is within just four percent of the optimal solution.

optimal runs 49 of 146
≤ 0.01 86 of 146
≤ 0.04 88 of 146

Table 4.4: ACS Performance during Initial Experimentation

Although the relationship between predicted and actual values is statistically

weak, the p-value indicates that with an α of 0.1 the model still detects variability

caused by the different parameter settings.

The fit for the response of “run time” was significantly better than the model

for “percent over optimal.” Obviously, the run time of the heuristic is primarily a

function of many controllable factors within ACS. The size of the ant colony, the

number of iterations performed, and the number of neighbors in the restricted nearest

neighbor list for each node are obvious drivers of this response. All values for run

times are in units of seconds.

The high adjusted R2 value and the small p-value indicate that the changes

in parameter values significantly affect the variability in running time, and that the

fitted model shows the strong relationship between predicted and actual values.

The parameter settings that yield maximum desirability of the two responses,

are presented in the following table. These values will be used in all remaining

experimentation.

R2 0.911130
R2
adjusted 0.872414

RMSE 42.0135
Observations 146

Table 4.5: Fit Statistics for Run Time
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Source DF SS MS F ratio
Model 44 1827781.7 41540.5 23.5339
Error 101 178278.5 1765.1 Prob > F
Total 145 2006060.2 <0.0001

Table 4.6: ANOVA Table for Run Time

Figure 4.2: Run Time for actual vs. predicted

Coded Value Natural Value
α 0.1873619 0.6343
β -1 1

MaxIterations -0.698048 7 (rounded)
NumAnts -1 5

NumNeighbors -1 2
q0 0.4758798 0.7641
ρ 1 0.9
ξ 1 1

Table 4.7: Final ACS Parameters Maximizing Desirability

The next section presents results obtained from testing the ACS metaheuristic

using the parameter settings in the table above which are found to jointly maximize

the desirability of the ACS metaheuristic running time and solution quality, the two

responses of interest.
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4.4 Results

The results in this section are based on two types of testing. The goal of the first

group of tests is to provide empirical verification of the final ACS parameter settings

affect on the two responses. Certain combinations of parameter settings produce

significantly longer running times even on smaller problems able to be solved to

optimality by solver software.

Due to the size of the constraint matrix generated for relatively small problem

instances, not only was the process of problem generation time consuming, but no

constraint matrix for BIP exceeding 250 ∗ 3 = 750 total nodes was successfully

generated due to memory overrun issues. Due to this limitation, testing ACS solution

quality required maintaining small problem sizes (750 total nodes) in order to obtain

optimal solutions for comparison.

4.4.1 Small Example Problems. Using the settings obtained through the

method of maximum desirability we’ll now run ACS against LINGO to compare

speed and solution quality for different problems. Density of arcs refers to the number

of arcs in the network relative to the number of arcs contained in a complete graph

on the same number of nodes. We use an arc density of ninety percent for purposes of

experimentation. This density was selected through trial and error. Greater densities

tend to produce single arc solutions which are rather uninteresting as they relate

to multimodal paths while less dense solutions sometimes result in disconnected

networks with no feasible solutions. In real-world problems, connectivity would be

less of an issue since the input to the problem is typically a transportation network

currently in use. For a complete discussion of graph completeness and density see

the text by West [12]. Table 4.8 summarizes the results of this testing by providing

a summary of the running time (in seconds) for ACS and BIP along with a column

showing the performance of ACS in terms of solution quality (given in terms of

percent over optimal).
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For this experiment test we perform twenty-five replications using randomly

generated networks containing 250 nodes and three modes. All networks have 90

percent arc density. The results in Table 4.8 indicate that the parameter values

selected by the method of maximum desirability produce solutions are superior to

those obtained in the parameter selection experiments in both running time and

solution quality.

Parameter Select Expt Max Des Settings Expt
Num runs 146 25

Number of Optimal Runs 49 = 33.56% 12 = 48%
Runs within 1% of Opt 86 = 58.90% 14 = 56%
Runs within 3% of Opt 88 = 60.27% 20 = 80%
Worst run Pers over opt 3674.71% 11%
Mean Run Time (sec) 65.49 0.9974

StDev Run time 117.62 0.5732
99% CI for Run Time (40.38,90.60) (0.70,1.29)

Mean Percent over Opt 338.97% 2.00%
StDev Percent over Opt 746.50% 3.16%

99% CI for Percent over Opt (179.58,498.36) (0.37,3.63)

Table 4.8: Max Desirability vs. Parameter Select Expt Settings

Note that the 99% confidence intervals on the mean run time and percent over

optimal for the two experiments do not overlap indicating statistical superiority of

the max desirability parameter settings.

The limiting factor in the use of deterministic approaches to the RCSP is in

generating the constraint matrix for the problem. The previous tests demonstrate

empirically that ACS produces solutions (even removing generation time from con-

sideration) more quickly than deterministic approaches for small problems. The

remaining set of experiments is intended to demonstrate that ACS is able to quickly

generate and solve problems that are too large to be generated for solution via BIP.

4.4.2 Larger Example Problems. We begin this section by solving problems

with three transportation modes and 600 nodes for a total f 1800 nodes. Nodes are
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progressively incremented by 25 ∗ 3 = 75 nodes for each successive experiment.

Twenty-five problems of each size with 90% arc density are solved and the results

are presented in Table 4.9. These larger probelms demonstrate the applicability of

this solution approach for realistically-sized problem instances.

Total Nodes Gen (sec) Gen σ̂ Solve (sec) Solve σ̂
1800 2.2290 0.0822 3.2798 0.9335
1875 2.3810 0.0750 3.3292 0.4862
1950 2.5576 0.0705 4.4426 0.6586
2025 2.7453 0.1385 3.6931 0.4839
2100 3.0298 0.0573 4.5830 0.4793
2175 3.1771 0.1266 4.5443 0.5391
2250 3.4552 0.1202 4.5717 0.5026
2325 3.6262 0.0870 6.0689 0.7672
2400 3.8958 0.1316 5.7184 0.5939
2475 4.1083 0.1147 5.1899 0.4678
2550 4.4337 0.1224 5.1891 0.5870
2625 4.6430 0.1288 6.1895 0.4923
2700 4.9430 0.1186 8.6282 0.6248
2775 5.2524 0.1430 7.6742 0.6755
2850 5.5732 0.1367 7.0104 0.4993
2925 6.0586 0.1643 7.8940 0.6168
3000 6.1649 0.1722 7.2732 0.6885
3075 6.4917 0.1337 8.6660 0.6033
3150 6.7733 0.1803 8.0548 1.1692
3225 7.0783 0.1586 8.8562 0.6442
3300 7.4648 0.1516 9.3473 0.5789
3375 7.8142 0.2569 9.4269 0.7746
3450 8.1275 0.3497 11.1530 0.8501
3525 8.3575 0.2204 11.3913 0.9032
3600 8.8417 0.3062 10.8643 0.6984

Table 4.9: Mean and σ̂ for Large Experiments

4.5 Conclusions and Future Work

This research developed an extension of the Ant Colony System metaheuristic

for solving the Resource Constrained Shortest Path Problem. Empirical results show

strong potential for using this metaheuristic to quickly obtain high-quality solutions
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to realistic sized problem instances which are too large for solution by deterministic

methods.

Future research should focus on two main areas. The first is on implementing

the ACS heuristic in a faster programming language like C++. Gains in speed for

ACS are nearly guaranteed by implementing it in a compiled rather than an inter-

preted language. Secondly, further research into compact problem representation

would be useful since it is problem generation due to computer memory overruns

rather than solution speed that limits the problem size able to be solved.
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V. Finding Near Efficient Solutions to Lexicographic,

Multi-Objective, Resource Constrained Shortest Path Problems

5.1 Introduction

Capacity planning in transportation is an integral and important function for

mid-range planning or fleet utilization. Rough-Cut Capacity Planning (RCCP) in

multimodal freight transportation has previously been addressed by Hartlage and

Weir and is solved using either deterministic binary integer programming solvers

or metaheuristics [56]. Since the RCSP is known to be NP-Hard, sufficiently large

problem instances require fast running metaheuristics to quickly provide high-quality

solutions. A new metaheuristic, ACS-RCSP, based on the Ant Colony System (ACS)

traditionally used to solve the Traveling Salesman Problem (TSP) was developed by

Hartlage and Weir [55].

In RCCP for multimodal freight, three controllable parameters ultimately de-

termine resource requirements and constraint right-hand-sides (RHS). These param-

eters are:

• number of tons (in millions) of freight to transport,

• number of transportation assets available in each transportation mode, and

• length (in days) of the planning horizon.

We use the term “controllable” to distinguish between parameters that directly

affect the RHS (or arc weights) and are completely determined by the decision maker,

and those parameters that affect the RHS but are primarily determined by factors not

directly under the control of the decision maker. Parameters in the latter category

are referred to as “uncontrollable.” Some examples of parameters in this category

include:

• productivity of each transportation asset type,
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• utilization rate of each transportation asset type, and

• block speed of each transportation asset type.

To illustrate these parameters, consider asset utilization or “UTE rate.” The

UTE rate for aircraft is defined by Air Mobility Command’s Air Mobility School as

“the total hours of capability a fleet of airlift aircraft can produce in a day expressed

in terms of per primary authorized aircraft.” Similar definitions are available for

other modes of transportation.

Note that higher UTE rates are not necessarily “better” in any sense of the

word. A decision maker may elect to increase UTE to an unsustainable “surge” UTE

rate for a short period of time but this is a strictly short-term situation.

UTE rate is affected by many factors. A list of twenty four different factors

affecting aircraft UTE rate illustrates that some of the factors influencing UTE rate

are controllable and some are not. This list is provided for ease of reference and in

order to clearly illustrate the point that UTE rate is not directly controllable:

Average Ground Time Average Mission Time and Leg Length
Airspeed En Route Crew Ratio
Crew Availability Crew Augmentation policies

Crew Stage Base policies Active and Reserve Force Mix
Reserve Call-Up Schedule Spares ande Resupply Availability
Maintenance Manpower Scenario Resource Constraints
Ramp Space Constraints PAA Airframes

JCS Withhold Levels Aerial Refueling Policies
Air Traffic Control Delays Political and diplomatic clearance delays

Weather Airfield operating hours
Mission Capable Rate Aircraft Reliability

Aircraft Maintainability Aircraft Availability
Aircraft Generation Schedule Sch. Maint. Interval and Duration

Table 5.1: Table of UTE Factors

5.1.1 Notions of Optimality. Multicriteria optimization problems define

optimality in several ways. We must first define how the various objective compo-

nents are to be compared before a notion of optimality or efficiency can be applied.
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Objectives are compared explicitly by ordering them according to some set of crite-

ria. For a complete discussion on ordering objectives and types of orders, refer to

Ehrgott [40].

We are concerned with different lexicographic orderings of the objective com-

ponents. Lexicographic ordering assigns a priority to each objective component so

that a small increase in a higher priority component outweighs a large increase in a

lower priority component. Examining the efficient solutions that result from different

objective component prioritizations is a major item if interest in this research.

Depending upon the size of the RCSP problem instance (number of network

nodes and density of network arcs), it may or may not be practical to locate these

efficient solutions using a binary integer programming (BIP) approach. In cases

where the problem instance is too large for BIP to be practical a metaheuristic, such

as the ACS-RCSP may be used to generate near-optimal solutions [55]. In cases

where a suboptimal solution is returned by ACS-RCSP, we consider such solutions

to be “near-efficient”.

5.1.2 Problem Statement. The problem under investigation in this research

is the location and identification of efficient solutions to the RCSP for multimodal

freight transportation. Locating such solutions requires defining some notion of

optimality. In the event that a lexicographic ordering of the transportation asset

types is provided, near-efficient solutions are generated with respect to the ordering.

If no objective ordering is provided, the near-efficient solutions are generated with

respect to minimizing costs by considering the price, in dollars, per million-ton-

mile for each transportation mode, and as such an implicit lexicographic objective

ordering is used.

5.1.3 Review of the Literature.
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5.1.3.1 Multimodal Freight Capacity Planning. Capacity planning

in multimodal freight transportation has received relatively little attention in the

literature to date [79]. In fact, much of the previous research addressing multiple

transportation modes focuses on mode selection rather than integration. A recent

survey of the transportation mode choice and carrier selection literature reviewed

over ninety separate references spanning a period of over forty years [83]!

The 2005 article by Park and Regan developed a bi-level programming for-

mulation for multimodal freight capacity planning. However the approach uses an

“average load factor” for each transportation mode and is therefore not additive with

respect to capacity over the entire fleet [96].

In 2006 Sun et al. use an existing linear programming model called MAX-

CAP which seeks to maximize system capacity for multiple origin-destination pairs

subject to resource and capacity constraints. They analyze system “flexibility” and

performance under degradation but consider only a single mode of transportation,

movement by rail [104].

Morlok and Riddle address the maximization of multimodal system capacity

by defining “traffic lanes” that represent aggregated paths and modes. Aggregation

is done based on origin/destination pairs that are geographically close to each other.

Capacity of the system is estimated by summing over the aggregated traffic lanes [88].

Unnikrishnan and Waller analyze the effect of of demand and capacity uncer-

tainty on rail network capacity, seeking to maximize the fraction of demand satisfied

for each origin/destination pair in the network [106].

Cambridge Systematics Inc. published a manual that discusses multimodal net-

works for both freight and passenger transportation. This manual uses multimodal

“corridors” which are essentially channel routes that utilize multiple transportation

modes. Capacity estimation of the network is done by analyzing the corridor capacity

by analysis of individual link capacity in each multimodal corridor [105].
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Andersen and Crainic address the design and optimization of a multimodal

scheduled service network. The approach used in this article is to maximize system

throughput by coordinating and optimizing the departure times for multiple vehi-

cle fleets utilizing a common network [4]. No literature source reviewed addressed

identification of efficient solutions under different parameter value assumptions.

5.1.3.2 RCSP Classification and Solution. The basic RCSP, formu-

lated below, is NP-Complete as shown by Handler and Zang [54]. To simplify the

presentation of the single mode resource constrained shortest path formulation the

following parameters and vectors are defined: N = {1, 2, ..., n} is the set of nodes

representing shipping locations, C = {(l, v) : (l, v) is an arc in the graph} is the set

of feasible directed arcs defined over the elements in N , G = (N,C) is the graph

consisting of nodes in N and edges in C, and E is the n × |C| node-arc adjacency

matrix where each column of E has a 1 in the lth row and a −1 in the vth row corre-

sponding to adjacency matrix element Elv. Now define Elv along with the following

sets, matrices, and scalars as:
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Elj =


1 if l ∈ N is the tail of arc j ∈ C

−1 if l ∈ N is the head of arc j ∈ C

0 otherwise

∀ l ∈ N , j ∈ C

q s(j) =

 1 if Esj = 1

0 otherwise
∀ j ∈ C

q t(j) =

 1 if Etj = −1

0 otherwise
∀ j ∈ C

Q =


q s

. . .

q t



h : the cost (in dollars) per MTM

r : the number of MTM available

B s : the 1× |C| vector of arc weights

x : the 1× |C| vector of decision variables

J =
B s

h

(5.1)

The single mode formulation can now be expressed as:
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MinimizeB s x (5.2a)

subject to:Ex = 0 (5.2b)

Qx = 1 (5.2c)

Jx ≤ r (5.2d)

x ∈ B|C| (5.2e)

In this formulation 5.2a is the objective function, 5.2b are the transshipment

portion of the flow balance constraints, 5.2c are the source and sink portion of the

flow balance constraints, 5.2d are the knapsack constraints, and 5.2e are the flow

forcing constraints.

The RCSP is a variation on the classic Shortest Path Problem (SPP) in which

the goal is to find a path of minimum total weight connecting a source node, s, and

a sink node, t. The RCSP adds an additional knapsack constraint which is applied

to the sum of the weights on the minimum s,t-path. Although the SPP is well

solved by algorithms like Dijkstra’s algorithm, Floyd-Warshall, and the Out-of-Kilter

algorithm, no efficient algorithm for solving the RCSP has yet been developed [48].

Formulating the RCCP in multimodal freight networks as an instance of the

RCSP was first accomplished by Hartlage and Weir in 2012 [56]. The original for-

mulation is shown below for reference.

We first define the following sets and parameters to generalize the single mode

for addressing multimodal freight transportation. Let P = {1, 2, . . . , p} be the set

of available transportation modes and k ∈ P be be the index for these modes. Also

N = {1, 2, . . . , n} be the set of nodes representing nodes, as in the single-mode

formulation with i ∈ N being the index for the nodes. Expanding the original

graph as described in the previous paragraph results in a node set with np nodes.
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The indices for the node set of the expanded graph are l, v ∈ {1, . . . , np}. Let

Nk = {1 + n(k − 1), . . . , n+ n(k − 1)} be the node set for mode k in the expanded

graph. Finally, let M i = {i, . . . , i+n(k− 1), . . . , i+n(p− 1)} be the node set in the

expanded graph corresponding to node i in the original graph. Define the additional

sets, and matrices used in formulating the multimodal RCSP:

Ck = {(l, v) : (l, v) is an intra-mode arc in the graph for mode k}

Di = {(l, v) : (l, v) is an inter-mode arc in the graph for node i}

η =
⋃
k

Nk: the node set for the expanded graph

Λ =

(⋃
k

Ck

)⋃(⋃
i

Di

)
: the arc set for the expanded graph

Gk = (Nk, Ck): the graph for mode k

H i = (M i, Di): the graph for node i

Ψ = (η,Λ): the expanded graph

(5.3)

Now we define additional indices. Let u ∈ {1, ..., |Λ|} be the index for the arc

set of the expanded graph, mk ∈ {1, ...|Ck|} be the index of the intra-mode arc set

for for each transportation mode k, and zi ∈ {1, ..., |Di|} be the index of the inter-

mode arc set for each node i. Also let s and t be the indices of the source and sink

nodes in the original, non-expanded graph respectively. With these sets and indices

we can now develop the multimodal formulation using the matrices defined below.
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Ek
l,mk =


1 if l ∈ Nk is tail of arc mk ∈ Ck

−1 if l ∈ Nk is head of arc mk ∈ Ck

0 otherwise

F i
l,zi =


1 if l ∈M i is tail of arc zi ∈ Di

−1 if l ∈M i is head of arc zi ∈ Di

0 otherwise

E = [E1...E2... . . .
...Ep]

F = [F 1...F 2... . . .
...F n]

A = [E
...F ]

q s(u) =
∑
l∈Ms

Al,u=1

Al,u∀u

q t(u) =
∑
l∈Mt

Al,u=−1

Al,u∀u

Q =


q s

. . .

q t



(5.4)

Additionally, we define the following vectors and matrices. Note that in the

definitions below, the notation d′ is taken to represent the matrix transpose of d.
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h : the 1× p matrix of mode transportation costs in dollars per MTM

r : the 1× p vector of MTM available in mode k

B sk : the 1× |Ck| vector of arc weights for mode k

B ti : the 1× |Di| vector of arc weights for node i

B s = [B s1...B s2... . . .
...B sp]

B t = [B t1
...B t2

... . . .
...B tn]

x : the 1× |Λ| vector of decision variables

B′ =


B s′

. . .

B t′



J1 =


B s1

h(1)
0 . . . 0

0 B s2

h(2)
. . . 0

...
...

. . .

0 0 B sp

h(p)


J = [J1

...0]

(5.5)

Using the preceding developments we formulate the multimodal RCSP as:

Minimize Bx

subject to: Ax = 0

Qx = 1

Jx ≤ r

x ∈ B|Λ|

(5.6)

This multimodal formulation of the RCSP is the focus of the methodology that

follows. Similar research efforts have used metaheuristics to solve a similar problem

called the resource constrained project scheduling problem (RCPSP). The RCPSP

is similar to the RCSP in that it includes constraints on total available resources
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but differs in that its objective is to minimize the total time required to complete a

series of tasks (called the “makespan”) and also includes precedence constraints on

the tasks.

Calhoun used a modified version of Van Hove’s original Multi-modal resource

constrained project scheduling problem with generalized precedence constraints (MMG-

PRCPSP) to model the assignment of aircraft to targets. He formulated the MMG-

PRCPSP as a lexicographic ordered goal program to minimize the number of targets

not covered. He solved the problem using Tabu Search [25, 62]. In the context of

Calhoun and Van Hove’s research “multi-modal” refers to the number of different

ways or “modes” in which a particular task can be accomplished. This is an im-

portant distinction since the term “multi-modal” is used in this article to mean the

movement of freight using two or more modes of transportation.

Coello Coello et al. develop a method for incorporating multiple objectives

into particle swarm optimization (PSO) by generating uniformly distributed points

along a Pareto front [27].

Nasiri develops a pseudo PSO metaheuristic for solving the RCPSP [94]. The

metaheuristic uses path relinking to allow particles to move toward optima (local

and global).

Merkle et al. developed an Ant Colony Optimization metaheruistic for the

RCPSP [84].

5.2 Methodology

The methodology developed here is intended to support tradeoff analysis in

capacity planning decisions as they relate to fleet mix, total cost, and time. In

particular, the first-of-kind methodology developed here allows for variable time res-

olution modeling (selection of time interval length and units), and provides insight

into the value, in dollars, of additional time or transportation assets. Typical ques-

tions that may be addressed by the methodology developed here are:
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• What is the minimum number of days, weeks, or months in which to ship x

tons of freight with the specified mix of assets?

• What is the lexicographic minimum asset mix required to ship x tons in y days,

weeks, or months?

• What is the minimum cost asset mix to ship in a given number of days, weeks,

or months?

• Is the current asset mix minimal? That is, are there excess assets in the current

asset mix that could be re-purposed for another mission?

Although there are certainly other questions that can be addressed using this

new methodology, these typify questions a decision maker might be interested in

regardless of whether the application is to military or civilian transportation.

5.2.1 Finding Near-Efficient Solutions. In theory the Pareto front is con-

tinuous and therefore contains an infinite number of efficient solutions. In some

applications, such as the application to multimodal transportation discussed in this

paper, the Pareto front is discrete. However, the number of discrete Pareto points

on the frontier can be quite large. Consider a relatively small number of transporta-

tion modes and number of assets in each mode. Given 7 transportation modes and

20 of each transportation asset type, the number of potential efficient solutions is

207 = 1, 280, 000, 000. Finding, and comparing all of these points is time consum-

ing and for large enough problems quickly becomes impractical. Typically, there are

three items to consider when evaluating multi objective optimization problems [118].

1. Minimization of the distance between the near-Pareto points found and the

global Pareto front.

2. Maximize the spread of the near-efficient solutions found to provide a smooth

and uniform near-Pareto front.

3. Maximize the number of elements of the global Pareto front found.
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We use an ACS metaheuristic developed by Hartlage and Weir to aid in gener-

ating solutions for this article [55]. The results included an optimization of the ACS

input parameters to jointly optimize both the running time and the solution quality.

These previous results suffice for addressing the first and third item in the list above.

In this article, our focus is on finding uniformly distributed, near-efficient solutions.

5.2.2 Distance between Solutions and Coverage of the Pareto Front. By

way of an example, consider route choices generated by an internet-based route

mapping engine. Initially, a start and an end point are specified. The engine provides

a driving route between the specified origin and destination. However, alternative

routes are often specified. In order to ensure that an alternate route differs from the

original route by more than simply cutting through a parking lot, the engine must

employ a measure of distance between successive solutions.

This article considers a two dimensional objective space. The objectives con-

sidered are time (in days) and cost (in dollars). For a fixed quantity of freight, there

is an inherent tradeoff between delivery time and cost. Increasing time reduces the

number of transportation assets and the associated cost of capacity. Decreasing the

time requires the use of more transportation assets and is likely to involve faster

and more expensive transportation modes, measured in dollars per million-ton-mile,

to meet shorter timelines. Shipping freight by air is an example of a relatively fast

but expensive mode of transportation. Increasing time will decrease the number of

transportation assets required to provide required capacity and will tend to require

less expensive modes of transportation.

We can measure how uniformly the solutions are distributed in the objective

space by measuring the range variance of the near-efficient solutions in the objective

space. The metric for measuring range distance proposed by Schott is [103]:
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S =

√√√√ 1

n− 1

n∑
i=1

(
d− di

)2
(5.7)

Where i and j are indices of the total number of efficient solutions generated,

n, and di is the distance from a solution, i, to the nearest solution j for j = 1, ..., n.

Mathematically, di is expressed as:

di = minj

(∣∣∣f i1(
→
x)− f j1 (

→
x)
∣∣∣+
∣∣∣f i2(

→
x)− f j2 (

→
x)
∣∣∣)∀i, j = 1, 2, ..., n (5.8)

Also, let d be the arithmetic average of all di and fk be vectors for k = 1, 2, ..., n.

This metric allows us to evaluate the uniformity of near-efficient solutions. Coverage

of the Pareto front is another issue which requires discussion. Coverage can be

determined by selecting two values in the objective space. For a fixed quantity of

freight, selecting minimum and maximum values for time determines the size and

location of the Pareto front segment of interest. Setting a minimum value for time

(Tmin), we obtain the highest cost near-efficient solution (Cmax). Setting a maximum

allowable time (Tmax), we obtain the lowest cost near-efficient solution (Cmin).

5.2.3 Generalized Range Variance for Lexicographic Objective Ordering.

The definition of range variance given by Schott is only sufficient to measure the

range variance in a two dimensional objective space. In the case of lexicographic

ordering of m components we require range variance measured in all m dimensions.

Generalizing range distance requires us to redefine the quantity di as:

di = minj

(
m∑
k=1

∣∣∣f ik(→x)− f jk(
→
x)
∣∣∣)∀i, j = 1, 2, ..., n (5.9)

Defining di in this way we can now provide range variance not only in in-

stances where the objective space has the dimensions of cost and time but also in
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situation where we are interested in an objective space having dimensions of time

and lexicographic order of all transportation asset types.

5.2.4 The Value of Dominated Solutions. In the context of capacity plan-

ning for multimodal transportation, global Pareto solutions have no excess capacity.

Stated in another way, the loss of a single asset from among the fleet proposed in the

Pareto solution causes the problem to be come infeasible for the current value of T .

In some applications and situations, a decision maker may wish to include reserve

capacity in the planning phase in order to account for reliability issues with the fleet

or late departures of assets due to weather delays for example. Making a decision

to operate with excess capacity is equivalent to selecting a dominated point (non-

efficient solutions) in the objective space. Therefore, presentation of non-efficient

solutions is beneficial to decision makers desiring this additional capacity.

5.2.5 Methodology Development. The input required for this methodology

include parameters and data which describe the transportation mode characteristics

and the configuration of the underlying network. Also, the maximum number of each

transportation asset type (mode) is a required input. An overview of the process is

provided here for reference.

• Provide required parameter and data inputs.

• Determine the minimum number of days required to ship the required tons of

freight with the provided asset mix.

• Using data provided for number and length of time intervals, generate near-

efficient solutions for each of the interval endpoints.

• Present the full set of near-efficient solutions to the decision maker.
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5.2.5.1 Parameters and Data. There are a number of inputs that are

required to initialize the problem. The following parameters determine characteris-

tics of the network.

• hk: The transportation cost, in dollars, per million-ton-mile for mode k.

• LexObjOrder: The lexicographic objective ordering for all modes of trans-

portation [1 : m].

• UTErate: The fleet utilization rate, in hours, for each transportation mode.

• Productivity: The fleet productivity, or percentage of the time that assets do

not move while empty (for repositioning) for each transportation mode.

• BlockSpeed: The average speed, door-to-door, for each transportation mode.

• Payload: The single trip, payload of each transportation mode in tons.

• XFerCost: The cost, per million tons, to transfer freight between two modes

of transportation (could be unique for each mode pairing).

• s: The source node or point of embarkation (POE) for the system.

• t: The sink node or point of debarkation (POD) for the system.

• rc: The required system capacity in millions of tons.

• IntSize: The number of days in a time interval.

• IntNum: The number of time intervals to analyze.

• MaxAssets: A vector, [a1, a2, ..., am] of the number of transportation assets

available in each mode of transportation.

• T : A scalar denoting the number of days allowed to ship the amount of freight

specified by rc.

The next set of parameters determine the search characteristics for the ACS-

RCSP metaheuristic:
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• NumNeighbors: The number of nearest neighbors on the reduced nearest

neighbor (NN) list. A reduced NN list reduces computation time by as much

as ten percent [37].

• α: pheromone weight factor on the interval [0, 1] reduces influence of the

pheromones.

• β: heuristic weight factor in the interval [0, 1], a lower β reduces the influence

of the heuristic information.

• T0 weight parameter for pheromone update operation

• q0: An intensification/diversification parameter in the interval [0, 1], a higher

q0 means more exploitation of learned knowledge while a lower q0 means more

exploration of arcs.

5.2.5.2 Parameters and Transportation Modes. We can conveniently

represent the time and transportation asset input variables for each problem instance

as a single vector. By convention, the first variable in the vector is the parameter T ,

in days. The remaining values in the vector indicate how many of each transportation

mode asset type is available. These variables are captured in MaxAssets defined

in the previous section. For the purposes of this methodology, a transportation

mode is a grouping of homogeneous transportation assets with access to a common

network structure (nodes with adjacencies defined). Defining modes in this way

allows greater flexibility in accurately describing the transportation system. For

instance, although it might be tempting to classify all air transportation assets as

belonging to a single mode of transportation, such a classification does not accurately

capture the differences between the asset types

5.2.5.3 Determining Minimum Days Required. Determining the min-

imum number of days required to provide necessary system capacity involves produc-

ing an infeasible solution and using bisection to measure the infeasibility in terms of
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days. Producing an infeasible solution is relatively easy. However, we are interested

in generating an infeasible solution using the maximum number of transportation

assets available in all modes of transportation. To do this, we set T = 1 and solve the

problem. From this infeasible solution, we implement a reverse and forward bisection

routine to determine the minimum number of days, T , required to obtain a feasible

solution with MaxAssets. First, we must define a function which determines the

feasibility of a RCSP provided inputs of T and MaxAssets as follows:

f(Time,AssetMix) =

 1 if RCSP admits a feasible solution

−1 otherwise
(5.10)

The function f used in this methodology is ACS-RCSP or a binary integer

programming solver. ACS-RCSP is the Ant Colony System metaheuristic for solving

the RCSP originally developed by Hartlage and Weir [55]. The reverse and forward

bisection routine pseudo-code is described in Figure 1:

This algorithm, FBintBisect, is similar to the bisection method used to find

roots of a function [24], however, it has been modified to include two additional

features. First, it includes a preprocessing step that “reverse” bisects, increasing

the value of T until a feasible solution is returned. Second, it uses the function

ceiling(x) which rounds fractional values, x, to the nearest integer value in the

direction of positive infinity.

5.2.5.4 Generating Near-Efficient Solutions. The value returned by

the bisection algorithm, minT , is the minimum number of days required in order

for the problem to be feasible with the assets available in MaxAssets. Now, be-

ginning from minT we generate the number of near-efficient solutions specified by

IntSize and IntNum. The subroutine to generate these near-efficient solutions

requires first developing three other utility subroutines: “StV alInc”, “AssetMix”,

90



Algorithm 1 Forward-Backward Integer Bisection Subroutine
L← 0
H ← T
x← f(H,Assets)
while x = −1 do

H ← 2 ∗H
x← f(H,Assets)

end while
M ← ceiling((L+H)/2)
while H − L ≥ 2 do

if x = 1 then
H ←M
M ← ceiling((L+H)/2)

else if x = −1 then
L←M
M ← ceiling((L+H)/2)

end if
x← f(H,MaxAssets)
T ←M

end while
return T

and “FeasAssetMin”. StV alInc takes an infeasible solution and determines by how

much each of the transportation asset types and time would have to be increased

independent of one another in order to achieve feasibility. In essence, StV alInc pro-

vides a measure of by how much the problem is infeasible with respect to each of the

controllable inputs. AssetMix increases system capacity by adding assets (up to that

specified in MaxAssets) in non-decreasing order with respect to the lexicographic

ordering (or by cost per million ton mile if no objective ordering is provided) until

a feasible solution is returned. Once this feasible solution is found, FeasAssetMin

determines if the asset mix returned by AssetMix contains any excess assets. Any

excess assets are removed from the asset mix so that the final asset mix returned by

FeasAssetMin is minimal, in that it is both necessary and sufficient for feasibility

at the current value of T . StV alInc is described in Algorithm 2, FeasAssetMin in

Algorithm 4, and AssetMix in Algorithm 3.
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Algorithm 2 Subroutine for Determining Initial Increase to Attain Feasibility

StV alInc← zeros(1, length(MinAssets))
for i = 1 : m do

StV alInc(i)← FBintBisect(Time,MinAssets)
end for
return StV alInc

For convenience in expressing AssetMix in pseudocode define the following

variables:

• R(x): The number of additional assets in mode x required to make the problem

feasible.

• A(x): The number of additional assets in mode x available.

• U(x): The number of assets in mode x currently used (Note: total assets in

mode x = A(x) + U(x)).

Now, let MinAssets be an m-vector of ones. Notice that the choice of IntSize

and IntNum determine the distance between efficient solutions and the number of

solutions generated, respectively. When combined, the selection of these parame-

ters determines both fidelity and coverage of the decision space. The range variance

provides a measure of the uniformity of distribution of the points generated in the ob-

jective space. The routine for generating efficient solutions is described in Algorithm

5.

5.3 Example Problems

We demonstrate the method of finding near-efficient solutions in this section.

Results are presented as a continuum from the most costly, shortest time required

solution to the least costly most time required solution. For each solution, the path,

cost in dollars, and the asset mix are provided.

5.3.1 Randomly Generated Examples. The test network consists of 50

nodes, three modes of transportation, and the node positions are randomly generated

92



Algorithm 3 Subroutine for Determining the Asset Mix

if lexOrd = 1 then
while “no feasible solution is returned” do

x = “index of least important transportation mode such that” A(x) > 0
and R(x) > 0

if R(x) <= A(x) and A(x) > 0 then
U(x)← U(x) +R(x)
A(x)← A(x)−R(x)

else if R(x) > A(x) and A(x) > 0 then
U(x)← U(x) + A(x)
A(x)← 0

end if
for i = 1 : m do

R(i) = StV alInc(Time, U(i))
end for

end while
else if lexOrd = 0 then

while “no feasible solution is returned” do
x = “index of least expensive transportation mode such that” A(x) > 0

and R(x) > 0
if R(x) <= A(x) and A(x) > 0 then

U(x)← U(x) +R(x)
A(x)← A(x)−R(x)

else if R(x) > A(x) and A(x) > 0 then
U(x)← U(x) + A(x)
A(x)← 0

end if
for i = 1 : m do

R(i) = StV alInc(Time, U(i))
end for

end while
end if
return U(x)
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Algorithm 4 Subroutine for Determining Minimal Assets

path = “sequence of nodes on the feasible s,t-path”
L = “number of nodes in path
IA = “the vector of initial assets used in each mode 1 : m”
EA = “the vector of excess assets used in each mode 1 : m”
RA = “the vector of reduced assets used in each mode 1 : m”
EM = “the vector of excess MTM used in each mode 1 : m”
AM = “the vector of available MTM used in each mode 1 : m”
IM = “the vector of initial MTM used in each mode 1 : m”
RM = “the vector of reduced MTM used in each mode 1 : m”
U = “the vector of UTE rates for each mode 1 : m”
PA = “the vector of single-trip payloads (in tons) for each mode 1 : m”
PR = “the vector of productivity rates for each mode 1 : m”
BL = “the vector of block speeds for each mode 1 : m”
AS = “the vector of max assets available for each mode 1 : m”
for j = 1 : m do

for i = 1 : L− 1 do
if mode of path(i) ≡ mode of path(i+ 1) ≡ j then

IM(j)← IM(j) + arclength (path(i), path(i+ 1))
end if

end for
end for
for i = 1 : m do

MTMasset(i)← (U(i) ∗ PA(i) ∗BL(i) ∗ PR(i))/1, 000, 000
AM(i)←MTMasset(i) ∗ AS(i) ∗ Time

end for
EM ← AM − IM
for i = 1 : m do

EA(i) = floor( EM(i)
AM(i)∗T ime)

end for
for i = 1 : m do

RA(i) = IA(i)− EA(i)
end for
return RA
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Algorithm 5 Subroutine for Generating Near-Efficient Solutions

if “lexicographic ordering is provided” then
lexOrd = 1

else if “lexicographic ordering is not provided” then
lexOrd = 0

end if
for i = 1 : IntNum+ 1 do

R = minT + i ∗ IntSize
x = f(R,MinAssets)
if x = −1 then

minDays = StV alInc
end if
runDays = minDays+ intSize ∗ (i− 1)
AssetMixV ect = AssetMix(lexOrd, runDays)
minAssetMixV ect = FeasAssetMin(AssetMixV ect)

end for

on a one thousand square mile grid. All parameter values are summarized in the

Table 5.3.1.1:

5.3.1.1 An Example Problem. The results of the analysis are provided

in tables 5.3 and 5.4 below. Notice that the minimum number of days required to

provide the required capacity with the given assets is 127. This value is calculated

using all available assets. Another feature of the methodology illustrated by the

results is that the asset mix for the minimum number of days is less than all available

assets. In fact, using bisection, this asset mix is minimal. In other words, a reduction

of a single unit of any asset in the given asset mix results in an infeasible problem

for a given value of T .

Two other concepts bear explanation. First, notice that costs of solutions 3,

4, and 5 in the asset/time example are identical. The cost expressed is for the

number of MTM used rather than the number available for the given asset mix.

The increase in time between solution one and solution two results in an increase in

MTM provided on a per asset basis. Therefore, although the number assets in the
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interval length (in days) 30
number of intervals 5

grid size (in square miles) 800
POE (source node) 1
POD (sink node) 50

number of millions of tons to move 5
arc density 90%

max assets available [10,15,10]
cost per MTM (in $) [100,110,120]

lexicographic ordering (3 = most important) [3,2,1]
UTE rate (hours/day) [15,15,15]

productivity (%) [70,70,70]
block speed (mph) [515,366,579]

payload (tons) [85,22,135]
transfer costs (in $ per MT) 0.000001

Table 5.2: Small Experiment Parameters

asset mix has decreased, the same number of MTM are being utilized to provide the

required capacity.

Secondly, notice that the cost increases in subsequent solutions in the assets/-

time example while they are reduced in the cost/time example. This is explained

by the lexicographic order when using the lexicographic order rather than cost as

an objective component, the most expensive mode of transportation is given an ob-

jective component ordering as the least important or critical transportation mode.

Therefore, the methodology seeks to minimize assets in the other two modes of trans-

portation first which results in a greater amount of capacity being provided by the

most expensive (but least important) transportation mode.

Using the generalized range variance developed in section 5.2, the range vari-

ance for these solutions is calculated as 0.0601 indicating that the near-efficient points

are uniformly spaced in the objective space.

Now if we solve the same problem based upon minimizing cost rather than

based upon a lexicographic ordering of the transportation modes we obtain the

solutions in table 5.4.
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solution days assets $ millions path (original) path (with modes)

1 127 [9,0,10] 177.99 [1,10,32,50]
mode1

[1, 10]
mode3

[10, 32]
mode1

[32, 50]

2 157 [7,0,8] 178.09 [1,32,50]
mode3

[1, 32]
mode1

[32, 50]

3 187 [5,0,10] 187.95 [1,10,50]
mode1

[1, 10]
mode3

[10, 50]

4 217 [5,0,9] 187.95 [1,10,50]
mode1

[1, 10]
mode3

[10, 50]

5 247 [4,0,8] 187.95 [1,10,50]
mode1

[1, 10]
mode3

[10, 50]

6 277 [0,0,7] 188.03 [1,50]
mode3

[1, 50]

Table 5.3: Multiobjective Lexicographic Order & Time Solution Results

solution days assets $ millions path (original) path (with modes)

1 127 [9,0,10] 177.99 [1,10,32,50]
mode1

[1, 10]
mode3

[10, 32, 50]

2 157 [10,0,7] 174.53 [1,44,50]
mode1

[1, 44]
mode3

[44, 50]

3 187 [9,0,4] 170.76 [1,44,50]
mode1

[1, 44]
mode3

[44, 50]

4 217 [9,0,2] 166.69 [1,44,50]
mode1

[1, 32]
mode3

[32, 50]

5 247 [9,0,2] 164.60 [1,44,32,50]
mode1

[1, 44]
mode3

[44, 32]
mode1

[32, 50]

6 277 [9,0,2] 163.22 [1,44,32,50]
mode1

[1, 44]
mode3

[44, 32]
mode1

[32, 50]

Table 5.4: Multiobjective Cost & Time Solution Results
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The range variance of this solution is calculated as 1613.09. This range vari-

ance indicates less uniformity in the spacing of the efficient solutions. However, the

magnitude of the cost objective component is quite large numbering in the hundreds

of thousands whereas the magnitude of the largest objective component of time in

the cost/time example was only in the hundreds.

Each node in the network is given a unique identifier which indicates the cor-

responding node and mode number. Each node v = i+ n(k− 1) where i is the node

identifier in the original network and k is the number of modes of transportation

in the problem [56]. For example, in a multimodal network with n = 10 nodes and

k = 3 modes of transportation, node five in mode three would receive the unique

identifier v = 5 + 10(3 − 1) = 25. With this node labeling method we describe one

of the multimodal paths in the solutions above. The remaining paths can easily be

obtained by the reader. The path in solution 1 in Table 5.3 consists of three shipping

arcs and two mode transfer arcs. Arc (1, 10) is in mode 1. At node 10 capacity is

transferred to mode 3. Capacity is added to arc (10, 32) in mode 3. At node 32

capacity is transfered to mode 1 and capacity is added to arc (32, 50) completing the

path.

5.4 Conclusions and Future Work

5.4.1 Conclusions. The methodology developed in this research provides

insight into the interaction of time, transportation asset quantity requirements, and

total cost. Since the RCSP is formulated based on a desire to generate a rough-cut

capacity estimate, the data inputs required to complete this analysis are limited to

data that are almost always available and will not need to be collected such as asset

capacity, speed, utilization rate, and productivity among others.

Very little input is required on the part of the decision maker in order to com-

plete the analysis. Once the distribution network is captured, and the engineering

data for all transportation assets is obtained, analysis only requires three pieces of
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information from a decision maker: maximum number of transportation assets avail-

able in each mode, length of an interval (in days) between solutions, and number of

intervals for which to generate solutions. The latter two items determine both the

fidelity and solution space coverage.

This methodology provides an explicit analysis of the tradeoffs involved be-

tween cost, time, and transportation assets and provides a decision maker with the

capability to determine a point on this continuum at which an acceptable balance

of all three goals is achieved.
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VI. Summary & Conclusions

This dissertation has made several original contributions to the field of Operations

Research. First, a new methodology for modeling the multimodal RCCP using the

RCSP was developed in Chapter 3 along with results showing the validity of the

method using a binary integer programming formulation and a commercial solver.

Chapter 4 developed a new ACS metaheuristic for solving the RCSP which is

a NP-Complete optimization problem. Results of this section show that the meta-

heuristic is able to quickly find high quality feasible solutions to large instances of

the RCSP.

Chapter 5 builds upon the modeling approach of Chapter 3 and the ACS

metaheuristic of chapter 4 by developing a new metaheuristic for generating near

Pareto solutions to the multimodal RCCP. The methodology considers the situation

where cost and time are the objective components of interest and also considers

a lexicographic objective ordering by which modes of transportation can be rank

ordered according to importance or criticality. An extension of the range variance

equation is developed to analyze the uniformity of near efficient solution spacing on

the near Pareto front generated.

Future research should focus on generating larger instances of the RCSP for

formulation as a BIP and solution by commercial solver software. The focus of this

dissertation is on rough-cut capacity planning which seeks to answer the question:

“Is there sufficient capacity in the system to meet transportation demands.” An-

other area of future research is aggregate transportation planning. In production

and inventory management this planning concept is used to answer the question:

“How much should I produce in each planning period in order to meet demands

across all planning periods. Aggregate transportation planning would ask an analo-

gous question: “What quantities of freight should be transported in each period to

meet demands across all planning periods.” Aggregate and rough-cut capacity plan-
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ning are closely related since the system capacity presents a constraint that must be

considered in aggregate planning. Aggregate planning in transportation should con-

sider crew scheduling, labor, warehousing, inventory, production, shipping, seasonal

demand, etc.

The author believes this area of research to be particularly rich it topic areas,

and timely considering the current need to reduce expenditures while maintaining

levels of transportation capacity. One way to achieve this is through the application

and extension of current Operations Research methods in order to improve efficiency

and effectiveness of transportation planning systems.
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VII. Appendix 1: FCD Experiment Results For ACS Testing
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alpha beta max iterations num ants num neighbors q 0 rho xi percent over optimal run time
-1 1 -1 1 -1 -1 -1 1 0.820803265 13.89314382
-1 1 1 -1 1 -1 1 1 0.004476521 11.47112901
1 -1 -1 1 1 -1 -1 -1 8.356031737 10.39651338
-1 -1 1 -1 1 -1 -1 1 0.004476511 13.6202956
-1 -1 -1 -1 -1 -1 -1 1 0.220307227 1.160888884
1 1 -1 -1 -1 1 -1 -1 0.004476511 1.182832176
1 1 -1 1 -1 -1 -1 -1 3.323575033 8.186534322
-1 -1 1 -1 -1 1 -1 1 0 12.6164134
-1 -1 1 1 -1 1 1 1 0 284.0650584
-1 1 -1 -1 1 -1 1 -1 0.004476511 1.924434949
0 0 0 -1 0 0 0 0 0.004476506 3.033284957
0 0 0 0 0 0 0 0 0.004476511 7.532166937
-1 1 1 1 1 1 -1 -1 0 351.2718527
-1 1 1 -1 1 1 1 -1 0 13.5170625
1 -1 -1 1 -1 1 1 1 0 12.07036425
0 0 1 0 0 0 0 0 4.07792742 59.80128759
-1 -1 1 1 1 -1 1 1 12.75990173 105.9970411
1 1 -1 1 1 -1 -1 1 0.004476516 11.03437797
1 -1 -1 1 -1 -1 1 -1 4.077927415 7.05146101
-1 -1 -1 1 -1 -1 -1 -1 4.07792743 8.662932021
1 -1 1 -1 1 -1 1 1 11.92272051 12.79150227
1 -1 -1 -1 1 1 1 1 0.004476511 1.158262433
1 -1 1 -1 1 1 -1 1 0 12.25825894
1 1 1 1 -1 -1 -1 1 0.82080326 296.1937443
-1 -1 -1 1 1 -1 -1 1 0.831086705 11.71672769
1 -1 -1 -1 -1 -1 1 1 4.07792742 1.040556272
1 1 1 -1 -1 1 -1 1 0 12.9834465
1 -1 -1 -1 1 1 -1 -1 0.004476511 1.172273152
-1 1 -1 1 -1 1 -1 -1 0 13.38079281
-1 -1 1 1 -1 -1 -1 1 3.323575038 364.9890439
1 0 0 0 0 0 0 0 3.338162012 9.002755658
1 1 -1 1 1 1 -1 -1 0 13.71408643
1 1 -1 -1 1 -1 -1 -1 18.49638851 1.772449152
-1 1 -1 1 -1 -1 1 -1 0.004476506 12.65459619
1 1 1 1 -1 -1 1 -1 0.004476511 287.9672545
1 1 -1 1 1 -1 1 -1 29.95927477 10.06518692
1 1 1 -1 1 1 -1 -1 0 13.88551646
1 -1 1 1 1 1 -1 -1 0 349.5637215
-1 -1 1 1 -1 -1 1 -1 3.323575033 390.7650016
-1 1 1 1 -1 -1 1 1 3.323575038 389.5671404
0 0 0 0 1 0 0 0 4.07792742 16.55031827
-1 1 1 1 -1 1 -1 1 0 279.400979
-1 1 1 1 1 -1 -1 1 20.14362899 113.3697083
-1 1 -1 1 1 -1 1 1 9.696973944 10.61463901
-1 1 -1 -1 -1 1 1 -1 0.004476511 1.092379199
-1 1 -1 -1 1 -1 -1 1 29.95927476 2.044553847
-1 1 1 -1 -1 -1 1 -1 26.19590945 11.50338954
1 1 1 -1 -1 -1 -1 -1 0.82080326 13.74440145
1 -1 -1 1 1 1 1 -1 0 13.28733065
1 1 1 1 1 -1 1 1 29.95927476 110.4218117
1 1 1 1 -1 1 1 1 0 286.3668183

Table 7.1: FCD Experimental Results Part 1
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alpha beta max iterations num ants num neighbors q 0 rho xi percent over optimal run time
1 1 -1 1 -1 -1 1 1 0.004476511 8.776136073
-1 1 -1 -1 1 1 -1 -1 0.004476511 1.188426881
1 -1 1 -1 1 1 1 -1 0 14.14519527
1 -1 -1 -1 -1 1 -1 1 0.004476511 1.168844644
0 0 0 0 0 0 1 0 4.07792743 8.870251945
1 -1 1 1 -1 1 1 -1 0 347.4683644
-1 -1 1 -1 -1 -1 -1 -1 4.725338158 7.689125853
1 -1 1 -1 -1 1 -1 -1 0 13.23266337
-1 -1 -1 -1 1 1 -1 1 0.004476511 1.118806301
-1 1 1 1 1 -1 1 -1 3.323575038 101.132139
1 1 -1 -1 -1 -1 1 -1 4.077927425 1.021030606
1 -1 1 1 1 -1 -1 1 8.356031737 90.26189041
0 0 0 0 0 -1 0 0 28.9359434 9.238635357
1 -1 -1 1 1 -1 1 1 8.356031742 10.70448409
1 -1 -1 1 1 1 -1 1 0 12.19686343
1 -1 1 -1 -1 -1 -1 1 0.82080326 10.67592725
1 -1 1 -1 -1 -1 1 -1 0.220307227 11.95604637
-1 1 -1 1 1 1 -1 1 0 12.27324157
1 -1 -1 -1 1 -1 -1 1 0.82080326 1.648543879
-1 -1 1 -1 -1 -1 1 1 1.63713001 10.19278707
-1 1 1 1 -1 1 1 -1 0 347.2821683
1 1 1 1 -1 1 -1 -1 0 348.9279031
-1 -1 -1 -1 1 -1 1 1 12.85493611 2.029011928
-1 -1 -1 1 -1 1 1 -1 0 13.89327317
0 0 -1 0 0 0 0 0 0.004476521 4.576830156
-1 -1 -1 1 -1 -1 1 1 4.077927425 6.010761982
-1 -1 1 1 1 1 1 -1 0 355.2176164
1 -1 1 1 1 1 1 1 0 283.1570151
0 0 0 0 0 0 0 1 0.004476506 8.650500413
1 -1 -1 -1 -1 -1 -1 -1 0.820803265 1.145741568
0 0 0 0 0 0 0 0 0.004476511 8.003210883
1 1 -1 -1 -1 -1 -1 1 1.637130005 1.113309233
-1 1 1 -1 1 -1 -1 -1 1.63713001 9.883301509
-1 1 1 -1 -1 1 1 1 0 12.58695421
1 1 -1 -1 -1 1 1 1 0.004476511 1.128043089
0 0 0 0 0 0 -1 0 0.004476516 18.16765092
1 1 -1 -1 1 1 1 -1 0.004476511 1.165215551
1 1 -1 -1 1 1 -1 1 0.004476511 1.147504641
1 1 -1 1 -1 1 -1 1 0 12.822396
0 -1 0 0 0 0 0 0 0.004476506 7.591606755
-1 -1 -1 -1 -1 -1 1 -1 0.82080326 1.111844522
1 -1 1 1 -1 -1 1 1 0.312667506 278.8550166
-1 -1 1 -1 -1 1 1 -1 0 13.66741485
-1 1 1 -1 -1 1 -1 -1 0 13.34852041
-1 1 1 -1 -1 -1 -1 1 1.637130005 8.078617813
1 -1 1 1 -1 1 -1 1 0 286.028231
-1 1 -1 -1 -1 -1 -1 -1 0.820803255 1.144141783
1 -1 -1 1 -1 1 -1 -1 0 13.61068865
-1 0 0 0 0 0 0 0 20.50392892 9.560084731
1 1 1 1 1 1 -1 1 0 267.8732819

Table 7.2: FCD Experimental Results Part 2
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alpha beta max iterations num ants num neighbors q 0 rho xi percent over optimal run time
-1 1 -1 1 -1 1 1 1 0 11.55188327
1 -1 1 1 1 -1 1 -1 0.004476511 100.8008896
-1 -1 -1 1 -1 1 -1 1 0 11.57078539
-1 -1 -1 1 1 1 -1 -1 0 12.44630337
1 -1 1 -1 1 -1 -1 -1 3.323575043 10.61495162
1 1 1 1 1 -1 -1 -1 8.356031737 86.57042836
-1 -1 1 1 1 -1 -1 -1 0.004476516 95.10207429
-1 -1 -1 1 1 1 1 1 0 11.72501128
-1 -1 1 -1 1 1 1 1 0 11.98009328
1 1 1 -1 1 1 1 1 0 12.22406884
-1 1 -1 -1 -1 -1 1 1 27.21905124 1.097110806
-1 -1 1 -1 1 -1 1 -1 36.7471159 12.69746448
-1 -1 1 -1 1 1 -1 -1 0 12.84176397
-1 1 1 -1 1 1 -1 1 0 11.85530815
1 -1 -1 -1 1 -1 1 -1 0.004476516 1.869312161
1 1 1 -1 -1 1 1 -1 0 13.04782186
1 1 1 -1 -1 -1 1 1 0.024175698 13.86908252
-1 -1 1 1 1 1 -1 1 0 263.5471229
-1 -1 -1 1 1 -1 1 -1 0.820803276 14.00132335
-1 1 1 1 1 1 1 1 0 262.6201033
-1 1 -1 1 1 -1 -1 -1 0.004476501 11.84573556
-1 -1 -1 -1 -1 1 1 1 0.004476511 1.141610316
-1 1 1 1 -1 -1 -1 -1 1.63713001 274.9328212
0 0 0 1 0 0 0 0 0.004476506 39.06677134
-1 1 -1 1 1 1 1 -1 0 12.48501304
1 -1 -1 1 -1 -1 -1 1 27.21905123 6.271068669
1 -1 -1 -1 -1 1 1 -1 0.004476511 1.139471357
-1 1 -1 -1 1 1 1 1 0.004476511 1.10176461
0 0 0 0 -1 0 0 0 4.959628171 10.77465139
1 1 1 -1 1 -1 1 -1 13.28078956 9.88961111
1 1 1 -1 1 -1 -1 1 14.50413045 11.16779772
1 1 -1 1 -1 1 1 -1 0 12.52054144
-1 1 -1 -1 -1 1 -1 1 0.004476511 1.104824077
1 1 -1 1 1 1 1 1 0 11.57956528
1 -1 1 1 -1 -1 -1 -1 4.077927425 468.4784276
1 1 -1 -1 1 -1 1 1 0.004476511 1.96316543
-1 -1 1 1 -1 1 -1 -1 0 323.6814468
-1 -1 -1 -1 -1 1 -1 -1 0.004476511 1.102508
1 -1 1 -1 -1 1 1 1 0 11.88593299
1 1 1 1 1 1 1 -1 0 317.8588666
-1 -1 -1 -1 1 -1 -1 -1 0.024175693 1.711611252
-1 -1 -1 -1 1 1 1 -1 0.004476511 1.142997225
0 0 0 0 0 1 0 0 0 16.77154163
0 0 0 0 0 0 0 -1 4.07792743 8.818615355
0 1 0 0 0 0 0 0 0.004476516 14.23597804

Table 7.3: FCD Experimental Results Part 3
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